viết các biểu thức dưới dạng tích
1/27 + x3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=\left(3+x\right)\left(9-3x+x^2\right)\\ b,=\left(4x+0,1\right)\left(16x^2-0,4x+0,01\right)\\ c,=\left(2-3x\right)\left(4+6x+9x^2\right)\\ d,=\left(\dfrac{x}{5}-\dfrac{y}{3}\right)\left(\dfrac{x^2}{25}+\dfrac{xy}{15}+\dfrac{y^2}{9}\right)\)
\(1,\\ a,=\left(x+2\right)\left(x^2-2x+4\right)\\ b,=\left(x-4\right)\left(x^2+8x+16\right)\\ c,=\left(3x+1\right)\left(9x^2-3x+1\right)\\ d,=\left(4m-3\right)\left(16m^2+12m+9\right)\\ 2,\\ a,=x^3+125\\ b,=1-x^3\\ c,=y^3+27t^3\)
a)
\(=\left(x+2\right)\left(x^2-2x+4\right)\)
b)
\(=\left(x-4\right)\left(x^2+4x+16\right)\)
c)=\(\left(3x+1\right)\left(9x^2-3x+1\right)\)
d)
=\(\left(4m-3\right)\left(16m^2+12m+9\right)\)
a)
=(x-2)3
b)\(\left(2-x\right)^3\)
c)\(\left(x+\dfrac{1}{3}\right)^3\)
d)\(\left(\dfrac{x}{2}+y\right)^3\)
e)
\(=\left(x-1\right)^2\left(x-1-15\right)+25\left[3\left(x-1\right)-5\right]\)
\(=\left(x-1\right)^2\left(x-16\right)+25\left(3x-3-5\right)\)
\(=\left(x-1\right)^2\left(x-16\right)+25\left(3x-8\right)\)
A) \(x^3+27\)
\(=x^3+3^3\)
\(=\left(x+3\right)\left(x^2-3x+9\right)\)
B) \(x^3-\dfrac{1}{8}\)
\(=x^3-\left(\dfrac{1}{2}\right)^3\)
\(=\left(x-\dfrac{1}{2}\right)\left(x^2+\dfrac{1}{2}x+\dfrac{1}{4}\right)\)
C) \(8x^3+y^3\)
\(=\left(2x\right)^3+y^3\)
\(=\left(2x+y\right)\left(4x^2-2xy+y^2\right)\)
D) \(8x^3-27y^3\)
\(=\left(2x\right)^3-\left(3y\right)^3\)
\(=\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)\)
a)\(\left(x+3\right)\left(x^2-3x+9\right)\)
b)\(\left(x-\dfrac{1}{2}\right)\left(x^2+\dfrac{1}{2}x+\dfrac{1}{4}\right)\)
c)\(\left(2x+y\right)\left(4x^2-2xy+y^2\right)\)
d)\(\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)\)
a: \(1-\dfrac{x^3}{8}=\left(1-\dfrac{1}{2}x\right)\left(1+\dfrac{1}{2}x+\dfrac{1}{4}x^2\right)\)
b: \(27x^3+1=\left(3x+1\right)\left(9x^2-3x+1\right)\)
c: \(64x^3-27y^3=\left(4x-3y\right)\left(16x^2+12xy+9y^2\right)\)
a: x^3+8=(x+2)(x^2-2x+4)
b: =(3x+1)(9x^2-3x+1)
c: =(x+3)(x^2-3x+9)
d: =(4x-3y)(16x^2+24xy+9y^2)
\(a.x^3+8=\left(x+2\right)\left(x^2-2x+4\right)\)
\(b.27x^3+1=\left(3x+1\right)\left(9x-3x+1\right)\)
\(c.x^3+27=\left(x+3\right)\left(x^2-3x+9\right)\)
\(d.64x^3-27y^3=\left(4x-3y\right)\left(16x^2+12xy+9y^2\right)\)
\(a,x^3+6x^2y+12xy^2+8y^3\\ =x^3+3.2x^2+3.2^2.x+\left(2y\right)^3\\ =\left(x+2y\right)^3\)
\(b,x^3-3x^2+3x-1\\ =x^3-3x^2.1+3x.1^2-1^3\\ =\left(x-1\right)^3\)
a) \(x^3+6x^2y+12xy^2+8y^3\)
\(=x^3+3\cdot x^2\cdot2y+2\cdot x\cdot\left(2y\right)^2+\left(2y\right)^3\)
\(=\left(x+2y\right)^3\)
b) \(x^3-3x^2+3x-1\)
\(=x^3-3\cdot x^2\cdot1+3\cdot x\cdot1^2-1^3\)
\(=\left(x-1\right)^3\)
\(27-x^3=3^3-x^3=\left(3-x\right)\left(9+3x+x^2\right)\)
Ta có x 3 – 6 x 2 + 12 x – 8 = x 3 – 3 . x 2 . 2 + 3 . x . 2 2 – 2 3 = ( x – 2 ) 3
Đáp án cần chọn là: D
\(\frac{1}{27}+x^3\)
\(=\left(\frac{1}{3}\right)^3+x^3\)
\(=\left(\frac{1}{3}+x\right)\left(\frac{1}{9}-\frac{1}{3}x+x^2\right)\)
\(\frac{1}{27}+x^3=\left(\frac{1}{3}\right)^3+x^3\)\(\left(\frac{1}{3}+x\right)\left[\left(\frac{1}{3}\right)^2-\frac{1}{3}x+x^2\right]\)