Cho A= 2x-3/5x+1
Tìm x để: a, A=0 b, A>0 c, A<0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ne-5;0\)
\(A=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x.\left(x+5\right)}\)
\(=\frac{\left(x^2+2x\right).x}{2x.\left(x+5\right)}+\frac{2.\left(x+5\right).\left(x-5\right)}{2x.\left(x+5\right)}+\frac{50-5x}{2x\left(x+5\right)}\)
\(=\frac{x^3+2x^2}{2x\left(x+5\right)}+\frac{2.\left(x^2-25\right)}{2x\left(x+5\right)}+\frac{50-5x}{2x\left(x+5\right)}=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)
\(=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}=\frac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}=\frac{x\left(x+5\right)\left(x-1\right)}{2x\left(x+5\right)}=\frac{x-1}{2}\)
b. \(A=0\Leftrightarrow\frac{x-1}{2}=0\Rightarrow x-1=0\Leftrightarrow x=1\)
\(A=\frac{1}{4}\Leftrightarrow\frac{x-1}{2}=\frac{1}{4}\Leftrightarrow4x-4=2\Leftrightarrow4x-6=0\Leftrightarrow x=\frac{3}{2}\)
c. Với x=0 thì \(A=\frac{0-1}{2}=-\frac{1}{2}\)
Với x=2 thì: \(A=\frac{2-1}{2}=\frac{1}{2}\)
d. \(A>0\Leftrightarrow\frac{x-1}{2}>0\Rightarrow\left(x-1\right).2>0\Rightarrow x-1>0\Leftrightarrow x>1\)
\(A< 0\Leftrightarrow\frac{x-1}{2}< 0\Leftrightarrow\left(x-1\right).2< 0\Leftrightarrow x-1< 0\Leftrightarrow x< 1;x\ne-5,0\)
e. \(A=\frac{x-1}{2}\inℤ\Rightarrow x-1\in Z\Rightarrow x\inℤ\)
Và \(\left(x-1\right)⋮2\Rightarrow x:2dư1\)
Vậy \(A\in Z\Leftrightarrow x\inℤ\)và x chia 2 dư 1
Câu 1: Bất phương trình nào sau đây là bất phương trình bậc nhất 1 ẩn:
A. 0x + 3 > 0
B. x^2 + 1 > 0
C. x + y < 0
D. 2x - 5 > 1
Câu 2: Cho bất phương trình: -5x + 10 > 0. Phép biến đổi đúng là:
A. 5x > 10
B. 5x > -10
C. 5x < 10
D. x < -10
Câu 3: Nghiệm của bất phương trình -2x > 10 là:
A. x > 5
B. x < -5
C. x > -5
D. x < 10
Câu 4: Cho |a|=3 với a < 0 thì:
A. a = 3
B. a = -3
C. a = +- 3
D. 3 hoặc -3
Câu 5: Cho a > b. Bất đẳng thức nào dưới đây đúng?
A. a + 2 > b + 2
B. -3a - 4 > -3b - 4
C. 3a + 1 < 3b + 1
D. 5a + 3 < 5b + 3
a) \(\left(2x-3\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-3=0\\x+2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=-2\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=\frac{3}{2}\\x=-2\end{cases}}\)
b) \(\left(2x-3\right)\left(x+2\right)>0\)
\(\Rightarrow\orbr{\begin{cases}2x-3>0;x+2>0\\2x-3< 0;x+2< 0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x>\frac{3}{2}\\x< -2\end{cases}}\)
Vậy \(\orbr{\begin{cases}x>\frac{3}{2}\\x< -2\end{cases}}\)
c) \(\left(2x-3\right)\left(x+2\right)< 0\)
\(\Rightarrow\begin{cases}2x-3>0;x+2< 0\\2x-3< 0;x+2>0\end{cases}\)
\(\Rightarrow\orbr{\begin{cases}x>\frac{3}{2};x< -2\left(\text{vô lý}\right)\\\frac{3}{2}>x>-2\end{cases}}\)
Vậy \(\frac{3}{2}>x>-2\)
a, A = (2x - 3)(x + 2) = 0
<=> (2x - 3) = 0 hoặc (x + 2) = 0
<=> 2x = 3 hoặc x = -2
<=> x = 3/2 hoặc x = -2
b, A = (2x - 3)(x + 2) > 0
<=> (2x -3) và (x + 2) cùng dấu
- TH1: 2x - 3 > 0 và x + 2 > 0
=> 2x > 3 và x > -2
=> x > 3/2 và x > - 2
Vậy x > 3/2
- TH2: 2x - 3 < 0 và x + 2 < 0
=> 2x < 3 và x < -2
=> x < 3/2 và x < -2
Vậy x < -2
c, A = (2x - 3)(x + 2) < 0
<=> (2x - 3) và (x + 2) trái dấu
- TH1: 2x - 3 < 0 và x + 2 > 0
=> 2x < 3 và x > -2
=> x < 3/2 và x > -2
=> -2 < x < 3/2
- TH2: 2x - 3 > 0 và x + 2 < 0
=> 2x > 3 và x < -2
=> x > 3/2 và x < -2 (vô lí)
Vậy -2 < x < 3/2
a) \(X^2+5X< 0\)
<=> \(X\left(X+5\right)< 0\)
<=> TH1: \(x< 0;x+5>0\Leftrightarrow-5< x< 0\)
TH2: \(x>0;x+5< 0\Leftrightarrow0< x< -5\) (vô lí)
Vậy \(-5< x< 0\)
a: (x-2)(x+3/4)>0
=>x-2>0 hoặc x+3/4<0
=>x>2 hoặc x<-3/4
b: (2x-5)(1-3x)>0
=>(2x-5)(3x-1)<0
=>3x-1>0 và 2x-5<0
=>1/3<x<5/2
c: (3-2x)(x+1)<0
=>(2x-3)(x+1)>0
=>2x-3>0 hoặc x+1<0
=>x>3/2 hoặc x<-1
d: (5x+11)(7-x)<0
=>(5x+11)(x-7)>0
=>x>7 hoặc x<-11/5