Cho tam giác đều ABC cạnh a. Dựng vectơ BD = vecto
và vecto BE = vecto AB
.
a) Tính độ dài các vectơ: CD, DE ,AD ,CE
b) Chứng minh rằng B là trung điểm của AE. Tính độ dài của vectơ AE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overrightarrow{u}=\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GM}+\overrightarrow{GN}=\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{CM}+\overrightarrow{GB}+\overrightarrow{BN}\)
\(=\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GB}+\overrightarrow{CM}+\overrightarrow{BN}=\overrightarrow{GB}+2\overrightarrow{BN}\)
G là trọng tâm \(\Rightarrow BG=\dfrac{2}{3}.\dfrac{a\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{3}\)
\(\left|\overrightarrow{u}\right|=\left|\overrightarrow{GB}+2\overrightarrow{BN}\right|\Rightarrow\left|\overrightarrow{u}\right|^2=BG^2+4BN^2+4\overrightarrow{GB}.\overrightarrow{BN}\)
\(=\dfrac{a^2}{3}+4a^2+4.\dfrac{a\sqrt{3}}{3}.a.cos120^0=\dfrac{13-2\sqrt{3}}{3}a^2\)
\(\Rightarrow\left|\overrightarrow{u}\right|=\sqrt{\dfrac{13-2\sqrt{3}}{3}}.a\)
Chưa đủ dữ kiện đề bài để chứng minh đẳng thức. Bạn xem lại đề.
Do C đối xứng A qua B nên B là trung điểm AC
Áp dụng công thức trung điểm:
\(\left\{{}\begin{matrix}x_B=\frac{x_A+x_C}{2}\\y_B=\frac{y_A+y_C}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_C=2x_B-x_A=7\\y_C=2y_B-y_A=2\end{matrix}\right.\) \(\Rightarrow C\left(7;2\right)\)
\(\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OA}+\overrightarrow{AB}+\overrightarrow{OD}+\overrightarrow{DC}=\overrightarrow{AB}+\overrightarrow{DC}=3\overrightarrow{DC}\)
\(\Rightarrow\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=3\left|\overrightarrow{DC}\right|=3a\)
Câu c cần biểu diễn vecto DE theo 2 vecto nào bạn?