Cho tam giác đều ABC cạnh a, M là trung điểm của BC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho ( DME) ̂=60. a) Chứng minh . b) Chứng minh MBD ∽ EMD và ECM ∽ EMD.∽ c) Tính khoảng cách từ điểm M đến đường thẳng DE.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : \(AD=AE\left(gt\right)\)
→ ΔADE là tam giác cân ở A
\(\Rightarrow\widehat{ADE}=\widehat{AED}=\dfrac{180^0-\widehat{A}}{2}=\dfrac{180^0-40}{2}=70^0\)
Mà ΔABC cũng là tam giác cân
\(\Rightarrow\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}=70^0\)
\(\Rightarrow\widehat{ADE}=\widehat{ABC}\left(=70^0\right)\)
mà 2 góc này ở vị trí so le trong
\(\Rightarrow DE//BC\)
b, Xét ΔABE và ΔACD có :
\(AB=AC\left(\Delta ABC\cdot cân\right)\)
\(\widehat{A}:chung\)
\(AD=AE\left(gt\right)\)
\(\Rightarrow\Delta ABE=\Delta ACD\left(c-g-c\right)\)
c, Nối dài đoạn AI xuống BC, ta được đường phân giác AK của tam giác ABC.
Mà ΔABC cân ở A
→ AK là đường trung tuyến của tam giác ABC
→ AI cũng là đường trung tuyến của tam giác ABC