Cho tứ giác ABCD có E,F theo thứ tự là trung điểm của BD, AC. Gọi I là trung điểm của EF và A' , B' , I' theo thứ tự là chân của các đường vuông góc kẻ từ A, B, I đến CD. Chứng Minh: AA' + BB' = II'
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham kHẢO 1; | - Vẽ hình đúng để làm được ý a | 0,25
|
a) (1 điểm) - Chỉ ra được tứ giác DEBF là hình bình hành |
1.0 | |
b) (0,75 điểm). Gọi O là giao điểm của AC và BD - Chỉ ra trong hbh ABCD có O là trung điểm O của AC và BD (1) - Chỉ ra trong hbh có BD cắt EF tại trung điểm của mỗi đường. Mà O là trung điểm của BD nên O là trung điểm của EF (2) - Từ (1) và (2) ⇒ đpcm |
0.25
0.25 0.25 | |
c) (1 điểm) - Chỉ ra được M là trọng tâm của ΔABD ⇒ OM = OA - Chỉ ra được N là trọng tâm của ΔBCD ⇒ ON = OC - Mà OA = OC ⇒ OM = ON ⇒ đpcm |
đầu bài chỗ " đường chéo BD cắt AE" chắc là " đường chéo BD cắt AI" phải không bn???
a) ta có: AB = CD ( ABCD là h.b.h)
=> AK = IC \(\left(=\frac{1}{2}AB=\frac{1}{2}CD\right)\)
mà AK // IC
=> AKCI là hình bình hành ( dấu hiệu)
xét \(\Delta DFC\)
có: DI =IC (gt)
EI // FC ( AKCI là h.b.h)
=> EI là đường trung bình của \(\Delta DFC\)
=> DE = EF ( t/c')
cmtt với \(\Delta AEB\)ta có: EF = FB
=> DE=EF=FB
b) xét \(\Delta ABD\)
có: AM=MD
AK=KB
=> KM là đường trung bình của \(\Delta ABD\)
=> KM // BD và \(KM=\frac{1}{2}BD\)
cmtt với \(\Delta BCD\)ta có: IN//BD và \(IN=\frac{1}{2}BD\)
=> KM // IN (//BD)
\(KM=IN\left(=\frac{1}{2}BD\right)\)
=> KMIN là hình bình hành ( dấu hiệu)
a) Trong tứ giác DEBF có:
Hai đường chéo BD và EF cắt nhau tại trung điểm O
Các cạnh đối BE và DF bằng nhau
\(\Rightarrow\) Tứ giác DEBF là hình bình hành.
b) Gọi O là giao điểm hai đường chéo của hình bình hành ABCD, ta có O là trung điểm của BD.
Theo câu a), DEBF là hình bình hành nên trung điểm O của BD cũng là trung điểm của EF.
Vậy AC, BD, EF cùng cắt nhau tại điểm O.
c) \(\Delta ABD\) có các đường trung tuyến AO, DE cắt nhau ở M nên OM = \(\dfrac{1}{3}\) OA.
\(\Delta CBD\) có các đường trung tuyến CO, BF cắt nhau ở N nên ON = \(\dfrac{1}{3}\) OC.
Tứ giác EMFN có các đường chéo cắt nhau tại trung điểm của mỗi đường OM = ON, OE = OF nên là hình bình hành.