Tìm tất cả STN n để:
a)n2+12n là số nguyên tố
b)3n+6 là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: TH1: p=3
=>p+14=17 và 4p+7=4*3+7=12+7=19(nhận)
TH2: p=3k+1
=>p+14=3k+15=3(k+5)
=>Loại
TH3: p=3k+2
4p+7=4(3k+2)+7=12k+8+7
=12k+15
=3(4k+5) chia hết cho 3
=>Loại
b: TH1: p=5
=>p+6=11; p+12=17; p+8=13; p+24=29
=>NHận
TH2: p=5k+1
=>p+24=5k+25=5(k+5)
=>Loại
TH3: p=5k+2
p+8=5k+10=5(k+2) chia hết cho 5
=>Loại
TH4: p=5k+3
p+12=5k+15=5(k+3)
=>loại
TH5: p=5k+4
=>p+6=5k+10=5(k+2)
=>Loại
Có : n^2+12n = n.(n+12)
=> đế n^2+12n là số nguyên tố => n=1 hoặc n+12 = 1
=> n=1 ( vì n thuộc N )
Khi đó : n^2+12n = 1^2+12.1 = 13 nguyên tố ( tm)
Vậy n = 1
k mk nha
Tìm tất cả các số tự nhiên n để :
a/ n^2 +12n là số nguyên tố
b/ 3^n +6 là số nguyên tố
Tìm tất cả các số tự nhiên n để:
a)n2 + 12n là số nguyên tố.
b)32 + 6 là số nguyên tố.
Nhớ giải ra nhé!
biết đâu mk chỉ thấy mọi người ở chtt nhiều nên mình không biết mà
b) n = 0 ta có: 3n + 6 = 30 + 6 = 7 là số nguyên tố
n ≠ 0 ta có 3n ⋮ 3 ; 6 ⋮ 3 nên 3n + 6 ⋮ 3 ; 3n + 6 > 3
Số 3n + 6 là hợp số vì ngoài ước 1 và chính nó còn có ước là 3.
Vậy với n = 0 thì 3n + 6 là số nguyên tố.
Lời giải:
$n^2+12n=n(n+12)$ nên để $n^2+12n$ là số nguyên tố thì 1 trong 2 thừa số $n, n+12$ bằng $1$, số còn lại là số nguyên tố.
Mà $n< n+12$ nên $n=1$
Khi đó: $n^2+12n=1^2+12.1=13$ là số nguyên tố (thỏa mãn)