Tìm n∈N để P/S A=\(\dfrac{n}{2n+3}\) là p/s tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=\dfrac{5n-4-4n+5}{n-3}=\dfrac{n+1}{n-3}=\dfrac{n-3+4}{n-3}=1+\dfrac{4}{n-3}\Rightarrow n-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n-3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 4 | 2 | 5 | 1 | 7 | -1 |
a.\(A=\dfrac{2n+1}{n-3}+\dfrac{3n-5}{n-3}-\dfrac{4n-5}{n-3}\)
\(A=\dfrac{2n+1+3n-5-4n+5}{n-3}\)
\(A=\dfrac{n+1}{n-3}\)
\(A=\dfrac{n-3}{n-3}+\dfrac{4}{n-3}\)
\(A=1+\dfrac{4}{n-3}\)
Để A nguyên thì \(\dfrac{4}{n-3}\in Z\) hay \(n-3\in U\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n-3=1 --> n=4
n-3=-1 --> n=2
n-3=2 --> n=5
n-3=-2 --> n=1
n-3=4 --> n=7
n-3=-4 --> n=-1
Vậy \(n=\left\{4;2;5;7;1;-1\right\}\) thì A nhận giá trị nguyên
b.hemm bt lèm:vv
Giả sử phân số \(\frac{2n+3}{n-2}\) chưa tối giản
=> 2n + 3; n - 2 có ước chung là số nguyên tố
Gọi số nguyên tố d là ước chung của 2n + 3; n - 2
\(\Leftrightarrow\hept{\begin{cases}2n+3⋮d\\n-2⋮d\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2n+3⋮d\\2n-4⋮d\end{cases}}\)
\(\Leftrightarrow7⋮d\)
Vì \(d\in N;7⋮d\Leftrightarrow d=1;7\)
Đến đây b tự làm tiếp
a, Gọi ƯCLN 2n + 5 ; n + 3 = d \(\left(d\inℕ^∗\right)\)
Ta có : \(2n+5⋮d\)(1)
\(n+3⋮d\Rightarrow2n+6⋮d\)(2)
Lấy (2) - (1) ta được : \(2n+6-2n-5⋮d\Rightarrow1⋮d\Rightarrow d=1\)
b, Để \(B=\frac{2n}{n+3}+\frac{5}{n+3}=\frac{2n+5}{n+3}\)nhận giá trị nguyên khi
\(2n+5⋮n+3\Leftrightarrow2\left(n+3\right)-1⋮n+3\)
\(\Rightarrow n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)
n + 3 | 1 | -1 |
n | -2 | -4 |
a) a liên quan đến bài này ??
b) Để b là số nguyên thì 2n + 2 chia hết cho 2n - 4.
Ta có: 2n + 2 chia hết cho 2n - 4
=> (2n - 4) + 6 chia hết cho 2n - 4
=> 6 chia hết cho 2n - 4 hay 2n - 4 thuộc Ư(6) = {-6; -3; -2; -1; 1; 2; 3; 6}
Để n nguyên thì 2n - 4 là chẵn => 2n - 4 thuộc {-6; -2; 2; 6}
=> n thuộc {-1; 1; 3; 5}