K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2018

(1) là Cacbon,KHHH là C

NTK của (5) là 1,166.12=14

=>(5) là Nito,KHHH là N

NTK của (2) là 14.2,857=40

=>(2) là Canxi,KHHH là Ca

NTK của (4) là 40.1,4=56

=>(4) là sắt,KHHH là Fe

NTK của (3) là 56.1,16=65

=>(3) là kẽm,KHHH là Zn

NTK của (6) là : 65.1,66=108

=>(6) là bạc,KHHH là Ag

24 tháng 9 2021

- (1) là ntố cacbon (C)

- (5) có NTK = 12.1,166 = 14 là ntố nitơ (N)

- (2) có NTK = 14.2,857 = 40 là ntố canxi (Ca)

- (4) có NTK = 40.1,4 = 56 là ntố sắt (Fe)

- (3) có NTK = 56.1,16 = 65 là ntố kẽm (Zn)

- (6) có NTK = 65.1,66 = 108 là ntố bạc (Ag)

Có thể giải rõ ra đc ko ạ

6 tháng 12 2021

1.

\(\left|\Omega\right|=15\)

a, \(P\left(A\right)=\dfrac{7}{15}\)

b, \(P\left(B\right)=\dfrac{2}{5}\)

c, \(P\left(C\right)=\dfrac{3}{5}\)

6 tháng 12 2021

2.

\(\left|\Omega\right|=C^5_{18}\)

a, \(\left|\Omega_A\right|=C^5_5+C^5_6+C^5_7\)

\(P\left(B\right)=\dfrac{C^5_5+C^5_6+C^5_7}{C^5_{18}}=\dfrac{1}{306}\)

b, TH1: 2 bi đỏ, 1 bi xanh, 2 bi vàng

\(\Rightarrow\) Có \(C^2_6.C^1_5.C^2_7\) cách lấy.

TH2: 2 bi đỏ, 2 bi xanh, 1 bi vàng

\(\Rightarrow\) Có \(C^2_6.C^2_5.C^1_7\) cách lấy.

\(\Rightarrow\left|\Omega_C\right|=C^2_6.C^1_5.C^2_7+C^2_6.C^2_5.C^1_7\)

\(\Rightarrow P\left(C\right)=\dfrac{C^2_6.C^1_5.C^2_7+C^2_6.C^2_5.C^1_7}{C^5_{18}}=\dfrac{10}{51}\)

c, \(\overline{D}\) là biến cố không lấy ra bi xanh nào.

\(\left|\Omega_{\overline{D}}\right|=C^5_{13}\)

\(\Rightarrow P\left(\overline{D}\right)=\dfrac{C^5_{13}}{C^5_{18}}=\dfrac{143}{952}\)

\(\Rightarrow P\left(D\right)=1-\dfrac{143}{952}=\dfrac{809}{952}\)

Bài 6: 

a: Là hợp số

b: Là hợp số

10 tháng 11 2022

c1

p+1;p+2;p+3p+1;p+2;p+3 là các số tự nhiên liên tiếp

Trong 3 số tự nhiên liên tiếp luôn tồn tại ít nhất 1 số chẵn. Mà số nguyên tố chẵn duy nhất là 2 nên để 3 số đó đều là số nguyên tố thì có 1 số bằng 2.

3 số tự nhiên liên tiếp có 1 số bằng 2 là 1;2;31;2;3 hoặc (2;3;4)(2;3;4)

Cả 2 bộ số trên đều không thỏa mãn vì 1 và 4 không là số nguyên tố.

Do đó không có số tự nhiên p nào thỏa mãn yêu cầu bài toán.

c2

a) 5 . 6 . 7  + 8 . 9 

ta có :

5 . 6 . 7 chia hết cho 3

8 . 9 chia hết cho 3

=> 5 . 6 . 7 + 8 . 9 chia hết cho 3   và ( 5 . 6 . 7 + 8 . 9 ) > 3 nên là hợp số

b 5 . 7 . 9 . 11 - 2 . 3 . 7

ta có :

5 . 7 . 9 . 11 chia hết cho 7

2 . 3 . 7 chia hết cho 7

=> 5 . 7 . 9 . 11 - 2 . 3 . 7 chia hết cho 7 và ( 5 . 7 . 9 . 11 - 2 . 3 . 7 ) > 7 nên là hợp số

c3

 

Bài 3: Tìm bốn số nguyên tố liên tiếp, sao cho tổng của chúng là số nguyên tố.Bài 4: Tổng của hai số nguyên tố có thể bằng 2003 được không?Bài 5: Tìm hai số nguyên tố, sao cho tổng và tích của chúng đều là số nguyên tố.Bài 6: Tìm số nguyên tố có ba chữ số, biết rằng nếu viết số đó theo thứ tự ngược lại thì ta được một số là lập phương của một số tự nhiên.Bài 7: Tìm số tự nhiên có bốn chữ số,...
Đọc tiếp

Bài 3: Tìm bốn số nguyên tố liên tiếp, sao cho tổng của chúng là số nguyên tố.

Bài 4: Tổng của hai số nguyên tố có thể bằng 2003 được không?

Bài 5: Tìm hai số nguyên tố, sao cho tổng và tích của chúng đều là số nguyên tố.

Bài 6: Tìm số nguyên tố có ba chữ số, biết rằng nếu viết số đó theo thứ tự ngược lại thì ta được một số là lập phương của một số tự nhiên.

Bài 7: Tìm số tự nhiên có bốn chữ số, chữ số hàng nghìn bằng chữ số hàng đơn vị, chữ số hàng trăm bằng chữ số hàng chục và số đó viết được dưới dạng tích của ba số nguyên tố liên tiếp.

Bài 8: Một số nguyên tố p chia cho 42 có số dư r là hợp số. Tìm số dư r.

Bài 9: Hai số nguyên tố sinh đôi là hai số nguyên tố hơn kém nhau 2 đơn vị. Tìm hai số nguyên tố sinh đôi nhỏ hơn 50.

Bài 10: Tìm số nguyên tố, biết rằng số đó bằng tổng của hai chữ số nguyên tốt và bằng hiệu của hai số nguyên tố.

mình cần gấp mong mọi người giúp mình

 

0
14 tháng 11 2015

Câu 1 :

a)2 ; b)3

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp sốBài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhấtBài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ướcBài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng...
Đọc tiếp

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002 ( Đây là bài của chịnhunglth đó ạ)
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố

Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p

Các bạn có thể trả lời vài câu hỏi cũng được.Bạn nào trả lời được nhiều mình sẽ ủng hộ cho nha

0
7 tháng 10 2023

Cách tìm số nguyên tố bạn An có đúng. Vì mỗi lần cộng như ta đều nhận được là số nguyên tố