K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2018

4-2t+12+5t=t+24-3t

<=>-2t+5t-t+3t=24-4-12

<=>5t=8

<=>t=8/5

14 tháng 11 2019

Lỗi sai: Khi chuyển vế hạng từ -3 từ vế trái sang vế phải mà không đổi dấu.

Sửa lại:

2t – 3 + 5t = 4t + 12

⇔ 2t + 5t – 4t = 12 + 3

⇔ 3t = 15

⇔ t = 5.

Vậy phương trình có nghiệm duy nhất t = 5.

27 tháng 5 2020

\(\frac{\left(2t+1\right)^2}{4}+\frac{\left(1-t\right)3t}{3}< \frac{5t}{4}+1\)

\(\Leftrightarrow3\left(2t+1\right)\left(2t+1\right)+12t\left(1-t\right)< 15t+12\)

\(\Leftrightarrow12t^2+12t+3+12t-12t^2< 15t+12\)

\(\Leftrightarrow9t< 9\)

\(\Leftrightarrow t< 1\)

Vậy : ..............

27 tháng 3 2018

Sai ở phương trình thứ hai, chuyển vế hạng tử -3 từ vế trái sang vế phải mà không đổi dấu.

Giải lại: 2t - 3 + 5t = 4t + 12

      <=> 2t + 5t - 4t = 12 + 3

      <=> 3t              = 15

      <=> t                = 5

Vậy phương trình có nghiệm duy nhất t = 5

27 tháng 3 2018

bay roi chuyen ve quen doi dau

NV
20 tháng 1

Nhận thấy \(t=0\) ko phải nghiệm

Với \(t\ne0\) pt tương đương:

\(\dfrac{3}{t+3+\dfrac{2}{t}}+\dfrac{2}{t+1+\dfrac{2}{t}}=1\)

Đặt \(t+\dfrac{1}{t}+1=x\Rightarrow t+\dfrac{2}{t}+3=x+2\)

Pt trở thành:

\(\dfrac{3}{x+2}+\dfrac{2}{x}=1\)

\(\Rightarrow3x+2\left(x+2\right)=x\left(x+2\right)\)

\(\Leftrightarrow x^2-3x-4=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}t+\dfrac{2}{t}+1=-1\\t+\dfrac{2}{t}+1=4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}t^2+2t+2=0\left(vn\right)\\t^2-3t+2=0\end{matrix}\right.\)

\(\Rightarrow t=\left\{1;2\right\}\)

20 tháng 1

Em cảm ơn ạ :33

14 tháng 6 2017

a, Đặt \(A=\left(2t^2-5t+1\right)-\left(t^2+3t+1\right)\)

\(=2t^2-5t+1-t^2-3t-1\)

\(=t^2-8t\)

Ta có: \(t^2-8t=0\)

\(\Leftrightarrow t\left(t-8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t-8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=0\\t=8\end{matrix}\right.\)

Vậy t = 0 hoặc t = 8 là nghiệm của A

b, Đặt \(B=\left(3t^2-2t+1\right)-\left(3t^2-2t+5\right)\)

\(=3t^2-2t+1-3t^2+2t-5\)

\(=-4\)

\(\Rightarrow\)B vô nghiệm vì giá trị của B không phụ thuộc vào t

Vậy đa thức B vô nghiệm

14 tháng 6 2017

a) Ta có: \(\left(2t^2-5t+1\right)-\left(t^2+3t+1\right)\)

\(=2t^2-5t+1-t^2-3t-1=t^2-8t\)

Xét \(t^2-8t=0\) hay \(t\left(t-8\right)=0\) ta được hai nghiệm là \(t_1=0,t_2=8\)

b) \(\left(3t^2-2t+1\right)-\left(3t^2-2t+5\right)\)

\(=3t^2-2t+1-3t^2+2t-5=-4\)

Rõ ràng ( - 4 ) không thể = 0 nên đa thức này không có nghiệm. Nó là đa thức bậc 0 ( vì -4 = -4t0 )

28 tháng 6 2019

\(4t^4+4t^3-3t^2-3t=0\)

\(\Leftrightarrow t\left(4t^3+4t^2-3t-3\right)=0\)

\(\Leftrightarrow t\left[4t^2\left(t+1\right)-3\left(t+1\right)\right]=0\)

\(\Leftrightarrow t\left(t+1\right)\left(4t^2-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t+1=0\\4t^2-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=0\\t=-1\\t^2=\frac{3}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=0\\t=-1\\t=\frac{\pm\sqrt{3}}{2}\end{matrix}\right.\)

___

\(t^3-2t=4\)

\(\Leftrightarrow t^3-2t-4=0\)

\(\Leftrightarrow t^3-2t^2+2t^2-4t+2t-4=0\)

\(\Leftrightarrow t^2\left(t-2\right)+2t\left(t-2\right)+2\left(t-2\right)=0\)

\(\Leftrightarrow\left(t-2\right)\left(t^2+2t+2\right)=0\)

\(t^2+2t+2>0\forall t\)

\(\Leftrightarrow t=2\)