giải phương trình
4 - 2t + 12 + 5t = t + 24 - 3t
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lỗi sai: Khi chuyển vế hạng từ -3 từ vế trái sang vế phải mà không đổi dấu.
Sửa lại:
2t – 3 + 5t = 4t + 12
⇔ 2t + 5t – 4t = 12 + 3
⇔ 3t = 15
⇔ t = 5.
Vậy phương trình có nghiệm duy nhất t = 5.
\(\frac{\left(2t+1\right)^2}{4}+\frac{\left(1-t\right)3t}{3}< \frac{5t}{4}+1\)
\(\Leftrightarrow3\left(2t+1\right)\left(2t+1\right)+12t\left(1-t\right)< 15t+12\)
\(\Leftrightarrow12t^2+12t+3+12t-12t^2< 15t+12\)
\(\Leftrightarrow9t< 9\)
\(\Leftrightarrow t< 1\)
Vậy : ..............
Sai ở phương trình thứ hai, chuyển vế hạng tử -3 từ vế trái sang vế phải mà không đổi dấu.
Giải lại: 2t - 3 + 5t = 4t + 12
<=> 2t + 5t - 4t = 12 + 3
<=> 3t = 15
<=> t = 5
Vậy phương trình có nghiệm duy nhất t = 5
Nhận thấy \(t=0\) ko phải nghiệm
Với \(t\ne0\) pt tương đương:
\(\dfrac{3}{t+3+\dfrac{2}{t}}+\dfrac{2}{t+1+\dfrac{2}{t}}=1\)
Đặt \(t+\dfrac{1}{t}+1=x\Rightarrow t+\dfrac{2}{t}+3=x+2\)
Pt trở thành:
\(\dfrac{3}{x+2}+\dfrac{2}{x}=1\)
\(\Rightarrow3x+2\left(x+2\right)=x\left(x+2\right)\)
\(\Leftrightarrow x^2-3x-4=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}t+\dfrac{2}{t}+1=-1\\t+\dfrac{2}{t}+1=4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}t^2+2t+2=0\left(vn\right)\\t^2-3t+2=0\end{matrix}\right.\)
\(\Rightarrow t=\left\{1;2\right\}\)
a, Đặt \(A=\left(2t^2-5t+1\right)-\left(t^2+3t+1\right)\)
\(=2t^2-5t+1-t^2-3t-1\)
\(=t^2-8t\)
Ta có: \(t^2-8t=0\)
\(\Leftrightarrow t\left(t-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t-8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=0\\t=8\end{matrix}\right.\)
Vậy t = 0 hoặc t = 8 là nghiệm của A
b, Đặt \(B=\left(3t^2-2t+1\right)-\left(3t^2-2t+5\right)\)
\(=3t^2-2t+1-3t^2+2t-5\)
\(=-4\)
\(\Rightarrow\)B vô nghiệm vì giá trị của B không phụ thuộc vào t
Vậy đa thức B vô nghiệm
a) Ta có: \(\left(2t^2-5t+1\right)-\left(t^2+3t+1\right)\)
\(=2t^2-5t+1-t^2-3t-1=t^2-8t\)
Xét \(t^2-8t=0\) hay \(t\left(t-8\right)=0\) ta được hai nghiệm là \(t_1=0,t_2=8\)
b) \(\left(3t^2-2t+1\right)-\left(3t^2-2t+5\right)\)
\(=3t^2-2t+1-3t^2+2t-5=-4\)
Rõ ràng ( - 4 ) không thể = 0 nên đa thức này không có nghiệm. Nó là đa thức bậc 0 ( vì -4 = -4t0 )
\(4t^4+4t^3-3t^2-3t=0\)
\(\Leftrightarrow t\left(4t^3+4t^2-3t-3\right)=0\)
\(\Leftrightarrow t\left[4t^2\left(t+1\right)-3\left(t+1\right)\right]=0\)
\(\Leftrightarrow t\left(t+1\right)\left(4t^2-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t+1=0\\4t^2-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=0\\t=-1\\t^2=\frac{3}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=0\\t=-1\\t=\frac{\pm\sqrt{3}}{2}\end{matrix}\right.\)
___
\(t^3-2t=4\)
\(\Leftrightarrow t^3-2t-4=0\)
\(\Leftrightarrow t^3-2t^2+2t^2-4t+2t-4=0\)
\(\Leftrightarrow t^2\left(t-2\right)+2t\left(t-2\right)+2\left(t-2\right)=0\)
\(\Leftrightarrow\left(t-2\right)\left(t^2+2t+2\right)=0\)
Vì \(t^2+2t+2>0\forall t\)
\(\Leftrightarrow t=2\)
4-2t+12+5t=t+24-3t
<=>-2t+5t-t+3t=24-4-12
<=>5t=8
<=>t=8/5