Chứng minh rằng không tồn tại x,y là số nguyên thỏa mãn biểu thức:
2012x2015+2013y2018=2015
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng tồn tại các số nguyên x,y,z thỏa mãn đẳng thức xx+yy=zp với p là một số nguyên tố lẻ
Chứng minh rằng tồn tại các số nguyên x,y,z thỏa mãn đẳng thức xx+yy=zp với p là một số nguyên tố lẻ
Không mất tính tổng quát giả sử rằng \(\left|x\right|\ge\left|y\right|\Rightarrow x^2\ge y^2\)
\(\frac{1}{7}=\frac{1}{x^2}+\frac{1}{y^2}\le\frac{1}{y^2}+\frac{1}{y^2}=\frac{2}{y^2}\Rightarrow y^2\le14\Rightarrow\left|y\right|\le3\)
Mặt khác áp dụng BĐT Cauchy Schwarz:
\(=\frac{1}{7}=\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{4}{x^2+y^2}\Rightarrow x^2+y^2\ge28\Rightarrow x^2\ge14\Rightarrow\left|x\right|\ge3\)
Bạn thay y={1;2;3;-1;-2;-3} vào rùi tìm x nhá cái BĐT kia làm màu cho đẹp thui :3
mình nghĩ là làm như vầy, bạn xem thử nha
ta thay p(1)=23 và p(23)=84 lần lượt vào p(x)=ax+b
ta sẽ có: p(1)=1a+b=23
p(23)=23a+b=84
=> -22a =-61 (BẠN GIẢI HỆ PT NHÉ)
=> a=61/22
vì theo đề cho hệ số P(x) nguyên mà a=61/22( không nguyên)
=> không tồn tại một đa thức với hệ số nguyên P(x) thỏa mãn P(1)=23 và P(23)=84