Cho x,y>0 thảo mãn x+y=1. Tìm GTNN, GTLN của A=x2+y2
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
AH
Akai Haruma
Giáo viên
4 tháng 1 2021
Bạn tham khảo lời giải tại đây:
cho \(x,y,z\ge0\) thỏa mãn \(x y z=6\). tìm GTLN và GTNN của biểu thức \(A=x^2 y^2 z^2\) - Hoc24
26 tháng 7 2016
bài này dễ ẹt ak
nhưng giúp mình bài này đi
chotam giac abc . co canh bc=12cm, duong cao ah=8cm
a> tinh s tam giac abc
b> tren canh bc lay diem e sao cho be=3/4bc. tinh s tam giac abe va s tam giac ace ( bằng nhiều cách )
c> lay diem chinh giua cua canh ac va m . tinh s tam giac ame
LQ
1
KR
7 tháng 5 2018
Áp dụng Bunyakovsky, ta có :
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)
=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)
=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)
Mấy cái kia tương tự
Lời giải:
Tìm giá trị nhỏ nhất
Ta thấy: \(x^2+y^2-2xy=(x-y)^2\geq 0\)
\(\Rightarrow x^2+y^2\geq 2xy\)
\(\Rightarrow 2(x^2+y^2)\geq (x+y)^2\)
\(\Leftrightarrow 2A\geq 1\Rightarrow A\geq \frac{1}{2}\)
Vậy \(A_{\min}=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)
Tìm GTLN:
Thay $y=1-x$ ta có: \(A=x^2+(1-x)^2=1+2x^2-2x\)
\(=1+2x(x-1)\)
Vì $y\geq 0$ nên \(x=1-y\leq 1\)
Vậy \(0\leq x\leq 1\Rightarrow x(x-1)\leq 0\)
\(\Rightarrow A=1+2x(x-1)\leq 1+2.0=1\)
Vậy \(A_{\max}=1\Leftrightarrow (x,y)=(1,0)\) và hoán vị.