K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔACE vuông tại C và ΔAKE vuông tại K có

AE chung

góc CAE=góc KAE
Do đó: ΔACE=ΔAKE

Suy ra: AC=AK

b: Xét ΔEAB cógóc EAB=góc EBA

nên ΔEAB cân tại E

=>EA=EB

mà EK là đường cao

nên K là trung điểm của AB

hay KA=KB

28 tháng 12 2023

δγΣαγηθλΣϕΩβΔ

28 tháng 12 2023

Xét △AMD và △DMC

   AB=AC(giả thuyết)

   Cạnh AM là cạnh chung 

   BM= CM ( M là trung điểm của cạnh BC)

=> △AMD=△DMC

Sorry bạn nhé mk chỉ bt làm câu a thui ☹
   

24 tháng 3 2020

d) Xét 2 \(\Delta\) vuông \(BCD\)\(KCD\) có:

\(\widehat{BDC}=\widehat{KDC}=90^0\left(gt\right)\)

\(BD=KD\) (vì D là trung điểm của \(BK\))

Cạnh CD chung

=> \(\Delta BCD=\Delta KCD\) (2 cạnh góc vuông tương ứng bằng nhau).

=> \(\widehat{DBC}=\widehat{DKC}\) (2 góc tương ứng).

\(\widehat{ECB}=\widehat{DBC}\left(cmt\right)\)

=> \(\widehat{ECB}=\widehat{DKC}\left(đpcm\right).\)

Chúc bạn học tốt!

24 tháng 3 2020

!

25 tháng 4 2018

Bạn tự vẽ hình nhé!

a) Áp dụng ĐL Py - ta - go cho ΔABC vuông tại A:

BC2 = AB2 + AC2 = 62 + 82 = 100

=> BC = 10 (cm).

b)Xét Δ vuông BEA và Δ vuông BEK:

BE: chung

∠ABE = ∠EBK (BD là phân giác)

=> ΔBEA = ΔBEK (cạnh góc vuông - góc nhọn kề)

=> BA = BK (c.t.ứ) => ΔAKB cân tại B.

c) Xét ΔBAD và ΔBKD:

BD: chung

∠ABD = ∠DBK (BD là phân giác)

BA = BK (ΔAKB cân tại B)

=> ΔBAD = ΔBKD (c.g.c)

=> ∠BAD = ∠BKD = 90⁰.

=> DK vuông góc BC.

d) Xét ΔAHK vuông tại H:

=> ∠HAK = ∠AHK - ∠HKA = 90⁰ - ∠HKA

Tương tự: ∠KAC = 90⁰ - ∠BAE

Mà ∠HKA = ∠BAE (ΔABK cân tại B)

=> ∠HAK = ∠KAC

=> AK là phân giác ∠HAC.

10 tháng 4 2018

ba ý đầu mị lm ntn này nek, coi đúng hông ha^^

a)xét tam giác vuông ABD và tam giác vuônng có: AB=AD(gt); A chung

=>ABD=ACE(ch-gn)

ý b bỏ ha,  lm ý c

AE=AD(tam giác ABD=ACE)=>Tam giác AED cân tại A

=>\(\widehat{AED}=\widehat{ADE}=\frac{180-\widehat{EAD}}{2}\left(1\right)\)

xét tam giác ABC cân tại A:

=>\(\widehat{ABC}=\widehat{ACB}=\frac{180-\widehat{BAC}}{2}hay:\widehat{EBC}=\widehat{DCB}=\frac{180-\widehat{EAD}}{2}\left(2\right)\)

Từ (1) và (2) => góc AED=EBC

mak hay góc mày ở vtris đồng vị nên ED//BC

1 tháng 4 2020

Sửa đề câu a thành tính độ dài AE, CE

a, Vì BE là phân giác của ABC 

\(\Rightarrow\frac{EC}{BC}=\frac{AE}{AB}\)\(\Rightarrow\frac{EC}{4}=\frac{AE}{7}=\frac{EC+AE}{4+7}=\frac{AC}{11}=\frac{6}{11}\)(Áp dụng tính chất dãy tỉ số bằng nhau)

Do đó: \(\frac{EC}{4}=\frac{6}{11}\)\(\Rightarrow EC=\frac{4.6}{11}=\frac{24}{11}\)  ; \(\frac{AE}{7}=\frac{6}{11}\)\(\Rightarrow AE=\frac{6.7}{11}=\frac{42}{11}\)

b, Xét △ABH vuông tại H và △CBF vuông tại F

Có: ABH = CBF (gt)

=> △ABH ᔕ △CBF (g.g)

\(\Rightarrow\frac{AB}{CB}=\frac{BH}{BF}\)\(\Rightarrow AB.BF=BH.BC\)

c, Gọi DF ∩ BC = { K }  ;  CF ∩ AB = { I }  ; GE ∩ DF = { O }

Xét △BIC có BF vừa là đường cao vừa là đường phân giác

=> △BIC cân tại B 

=> BI = BC 

và IF = FC

mà AD = DC

=> DF là đường trung bình của △CAI

=> DF // AI và 2FD = AI   

=> DF // AB

=> DK // AB

Xét △ABC có: DK // AB và AD = DC (gt)

=> DK là đường trung bình của △ABC

=> K là trung điểm của BC

=> BK = KC 

Vì DF // AB (cmt)  

  • \(\Rightarrow\frac{BG}{GD}=\frac{BI}{DF}\)(định lý Thales) \(\Rightarrow\frac{BG}{GD}=\frac{2BI}{2DF}\)\(\Rightarrow\frac{BG}{GD}=\frac{2BI}{AI}\)  (1)
  • \(\Rightarrow\frac{AE}{DE}=\frac{AB}{DF}\) (Hệ quả định lý Thales)

Ta có: \(\frac{CE}{DE}=\frac{DC-DE}{DE}=\frac{DC}{DE}-1=\frac{AD}{DE}-1=\frac{AE-DE}{DE}-1=\frac{AE}{DE}-1-1=\frac{AB}{DF}-2\)

\(=\frac{AB}{DF}-2=\frac{2\left(AI+BI\right)}{2DF}-2=\frac{2AI+2BI}{AI}-2=\frac{2AI+2BI-2AI}{AI}=\frac{2BI}{AI}\)  (2)

Từ (1) và (2) \(\Rightarrow\frac{BG}{GD}=\frac{CE}{DE}\)\(\Rightarrow GE//BC\)

  • \(\Rightarrow\frac{GO}{KC}=\frac{OF}{FK}\)  (Hệ quả định lý Thales)
  • \(\Rightarrow\frac{OE}{BK}=\frac{OF}{FK}\)​ (Hệ quả định lý Thales)

\(\Rightarrow\frac{GO}{KC}=\frac{OE}{BK}\)

Mà KC = BK 

=> GO = OE 

=> O là trung điểm của GE

Mà GE ∩ DF = { O }

=> DF đi qua trung điểm của EG