1. Cho biểu thức : B = \(\left(\dfrac{\sqrt{x}}{2}-\dfrac{1}{2\sqrt{x}}\right)^2\left(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\right).\)
a) Rút gọn B.
b) Tìm x để B \(< 0\)
c) Tìm x để B = -2.
2. Tìm GTLN của A = \(\sqrt{x-1}+\sqrt{1+x}\).
Bài 1 : ĐKXĐ : \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)
Câu a :
\(B=\left(\dfrac{\sqrt{x}}{2}-\dfrac{1}{2\sqrt{x}}\right)^2\left(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\right)\)
\(=\left(\dfrac{\sqrt{x}.\sqrt{x}-1}{2\sqrt{x}}\right)^2\left(\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\left(\dfrac{x-1}{2\sqrt{x}}\right)^2\left(\dfrac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\dfrac{\left(x-1\right)^2}{\left(2\sqrt{x}\right)^2}\times\dfrac{-4\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\left(x-1\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{4x}\times\dfrac{-4\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=-\dfrac{x-1}{\sqrt{x}}\)
Câu b :
Để \(B< 0\Leftrightarrow-\dfrac{x-1}{\sqrt{x}}< 0\Leftrightarrow\dfrac{x-1}{\sqrt{x}}>0\Leftrightarrow x-1>0\Leftrightarrow x>1\)
Vậy \(x>1\) thì \(B< 0\)
Câu c :
Để \(B=-2\Leftrightarrow-\dfrac{x-1}{\sqrt{x}}=-2\)
\(\Leftrightarrow\left(\dfrac{-\left(x-1\right)}{\sqrt{x}}\right)^2=\left(-2\right)^2\)
\(\Leftrightarrow\dfrac{x^2-2x+1}{x}=4\)
\(\Leftrightarrow\dfrac{x^2-2x+1}{x}=\dfrac{4x}{x}\)
\(\Leftrightarrow x^2-2x+1=4x\)
\(\Leftrightarrow x^2-6x+1=0\)
\(\Delta=\left(-6\right)^2-4=32>0\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{6+\sqrt{32}}{2}=3+2\sqrt{2}\\x_1=\dfrac{6-\sqrt{32}}{2}=3-2\sqrt{2}\end{matrix}\right.\)
Vậy \(x=3+2\sqrt{2}\) hoặ \(x=3-2\sqrt{2}\) thì \(B=-2\)