ax^2+by^2-ay^2-bx^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(ax+by\right)^2-\left(ay+bx\right)^2\)
\(=\left(ax+by-ay-bx\right)\left(ax+by+ay+bx\right)\)
\(=\left(ax-ay-bx+by\right)\left(ax+ay+bx+by\right)\)
\(=\left[a\left(x-y\right)-b\left(x-y\right)\right]\left[a\left(x+y\right)+b\left(x+y\right)\right]\)
\(=\left(a-b\right)\left(x-y\right)\left(a+b\right)\left(x+y\right)\)
\(\left(ax+by\right)^2-\left(ay+bx\right)^2\)
(ax+ay+bx+by)(ax−ay+by−bx) \(=\left(ax+ay+bx+by\right)\left(ax-ay+by-bx\right)\)
\(=\left(a+b\right)\left(x+y\right)\left(a-b\right)\left(x-y\right)\)
\(\left(ax+by\right)^2-\left(ay+bx\right)^2=\left(ax+by-ay-bx\right)\left(ax+by+ay+bx\right)\)
\(=\left[a\left(x-y\right)-b\left(x-y\right)\right].\left[a\left(x+y\right)+b\left(x+y\right)\right]\)
\(=\left(a-b\right)\left(x-y\right)\left(a+b\right)\left(x+y\right)\)
a) \(\dfrac{ax+ay-bx-by}{ax-ay-bx+by}=\dfrac{a\left(x+y\right)-b\left(x+y\right)}{a\left(x-y\right)-b\left(x-y\right)}=\dfrac{\left(a-b\right)\left(x+y\right)}{\left(a-b\right)\left(x-y\right)}=\dfrac{x+y}{x-y}\)
b) \(\dfrac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}=\dfrac{\left(a+b\right)^2-c^2}{\left(a+c\right)^2-b^2}=\dfrac{\left(a+b+c\right)\left(a+b-c\right)}{\left(a+c+b\right)\left(a+c-b\right)}=\dfrac{a+b-c}{a+c-b}\)
a/ \(x\left(a+b\right)+y\left(a+b\right)=\left(x+y\right)\left(a+b\right)\)
b/ \(a\left(x+y\right)+b\left(x+y\right)-1\left(x+y\right)=\left(a+b-1\right)\left(x+y\right)\)
c/ \(=x^2z\left(x+y-z-yz\right)\)
a) \(ax+ay+bx+by=a\left(x+y\right)+b\left(x+y\right)=\left(a+b\right)\left(x+y\right)=\left(-2\right).17=-34\)
b) \(ax-ay+bx-by=a\left(x-y\right)+b\left(x-y\right)=\left(a+y\right)\left(x-y\right)=\left(-7\right).\left(-1\right)=7\)
a) suy ra a.(x+y)+b.(x+y)
suy ra (x+y) (a+b)
suy ra 17. (-2) = 34
b) suy ra a.(x-y) + b.(x-y)
suy ra (a+b) (x-y)
suy ra (-7).(-1)
mk làm bậy ko bít đúng hay ko
\(ax^2+by^2-ay^2-bx^2=x^2\left(a-b\right)-y^2\left(a-b\right)=\left(a-b\right)\left(x^2-y^2\right)=\left(a-b\right)\left(x-y\right)\left(x+y\right)\)