K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2018

hs có 3 cực trị tạo thành đỉnh của một tam giác đều là

ta có b\(^3\)+24a=0

26 tháng 5 2017

Chọn C

Ta có

 

nên hàm số có 3 điểm cực trị khi m > 1.

Với đk m > 1 đồ thị hàm số có 3 điểm cực trị là:

 

Ta có:

Để 3 điểm cực trị của đồ thị hàm số tạo thành tam giác đều thì:

So sánh với điều kiện ta có: m = 1 + 3 3 2  thỏa mãn.

[Phương pháp trắc nghiệm]

Yêu cầu bài toán

 

 

4 tháng 6 2018

Đáp án A

15 tháng 6 2019

Đáp án A

14 tháng 5 2018

Đáp án là A

23 tháng 11 2018

Ta có  đao hàm y’ = 4x3- 8( m-1) x= 4x( x2- 2( m-1) )

 

nên hàm số có 3 điểm cực trị khi m> 1.

Với điều kiện m > 1  đồ thị hàm số có 3 điểm cực trị là:

A ( 0 ; 2 m - 1 ) ,   B ( 2 ( m - 1 ) ; - 4 m 2 + 10 m - 5 ) , C ( - 2 ( m - 1 ) ; - 4 m 2 + 10 m - 5 ) .

Ta có: AB2= AC2= 2( m-1) + 16( m-1) 4; BC2= 8( m-1)

Để 3 điểm cực trị của đồ thị hàm số tạo thành tam giác đều thì:

AB= AC= BC tương đương  AB2= AC2= BC2

Do đó: 2( m-1) + 16( m-1) 4= 8( m-1)

⇔ 8 ( m - 1 ) 4 - 3 ( m - 1 ) = 0  

So sánh với điều kiện ta có: m = 1 + 3 3 2   thỏa mãn.

Chọn A.

8 tháng 1 2019

+ Ta có: y’ = 6x2-6( 2m+1) x+ 6m(m+1)

do đó  hàm số luôn có cực đại cực tiểu với mọi m.

+ Tọa độ các điểm CĐ, CT của đồ thị là  A( m; 2m3+3m2+1 ) và B( m+1; 2m3+3m2)

Suy ra AB = √2 và phương trình đường thẳng AB: x+ y-2m3-3m2-m-1=0.

 

+ Do đó, tam giác MAB có diện tích nhỏ nhất khi và chỉ khi khoảng cách từ M  tới AB nhỏ nhất.

d ( M , A B ) = 3 m 2 + 1 2 ⇒ d ( M , A B ) ≥ 1 2 ⇒ m i n   d ( M , A B ) = 1 2

đạt được khi m=0

Chọn B

30 tháng 9 2018

Chọn B

Ta có:

⇒ ∀ m ∈ ℝ , hàm số luôn có CĐ, CT

Tọa độ các điểm CĐ, CT của đồ thị là

Suy ra A B = 2

và phương trình đường thẳng  x + y - 2 m 3 - 3 m 2 - m - 1 = 0

Do đó, tam giác MAB có diện tích nhỏ nhất khi và chỉ khi khoảng cách từ M tới AB nhỏ nhất.

Ta có:

⇒ đạt được khi m = 0

6 tháng 9 2018

Đáp án A

Xét hàm số y = x 4 − 2 m x 2 + 2 m + m 4 ,  có y ' = 4 x 3 − 4 m x , ∀ x ∈ ℝ  

Phương trình  y ' = 0 ⇔ 4 x 3 − 4 m x = 0 ⇔ x x 2 − m = 0 ⇔ x = 0 x 2 = m *

Để hàm số có ba điểm cực trị ⇔ *  có 2 nghiệm phân biệt khác 0 

Khi đó, gọi A 0 ; 2 m + m 4 , B m ; m 4 − m 2 + 2 m , C − m ; m 4 − m 2 + 2 m  là tọa độ ba điểm cực trị của đồ thị hàm số.

Tam giác ABC đều ⇔ A B 2 = B C 2 ⇔ m + m 4 = 4 m ⇔ m 4 = 3 m ⇔ m = 3 3