Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số \(y=x^4-4\left(m-1\right)x^2+2m-1\)có 3 điểm cực trị tạo thành 3 đỉnh của một tam giác đều. Help me pl
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C
Ta có
nên hàm số có 3 điểm cực trị khi m > 1.
Với đk m > 1 đồ thị hàm số có 3 điểm cực trị là:
Ta có:
Để 3 điểm cực trị của đồ thị hàm số tạo thành tam giác đều thì:
So sánh với điều kiện ta có: m = 1 + 3 3 2 thỏa mãn.
[Phương pháp trắc nghiệm]
Yêu cầu bài toán
Ta có đao hàm y’ = 4x3- 8( m-1) x= 4x( x2- 2( m-1) )
nên hàm số có 3 điểm cực trị khi m> 1.
Với điều kiện m > 1 đồ thị hàm số có 3 điểm cực trị là:
A ( 0 ; 2 m - 1 ) , B ( 2 ( m - 1 ) ; - 4 m 2 + 10 m - 5 ) , C ( - 2 ( m - 1 ) ; - 4 m 2 + 10 m - 5 ) .
Ta có: AB2= AC2= 2( m-1) + 16( m-1) 4; BC2= 8( m-1)
Để 3 điểm cực trị của đồ thị hàm số tạo thành tam giác đều thì:
AB= AC= BC tương đương AB2= AC2= BC2
Do đó: 2( m-1) + 16( m-1) 4= 8( m-1)
⇔ 8 ( m - 1 ) 4 - 3 ( m - 1 ) = 0
So sánh với điều kiện ta có: m = 1 + 3 3 2 thỏa mãn.
Chọn A.
+ Ta có: y’ = 6x2-6( 2m+1) x+ 6m(m+1)
do đó hàm số luôn có cực đại cực tiểu với mọi m.
+ Tọa độ các điểm CĐ, CT của đồ thị là A( m; 2m3+3m2+1 ) và B( m+1; 2m3+3m2)
Suy ra AB = √2 và phương trình đường thẳng AB: x+ y-2m3-3m2-m-1=0.
+ Do đó, tam giác MAB có diện tích nhỏ nhất khi và chỉ khi khoảng cách từ M tới AB nhỏ nhất.
d ( M , A B ) = 3 m 2 + 1 2 ⇒ d ( M , A B ) ≥ 1 2 ⇒ m i n d ( M , A B ) = 1 2
đạt được khi m=0
Chọn B
Chọn B
Ta có:
⇒ ∀ m ∈ ℝ , hàm số luôn có CĐ, CT
Tọa độ các điểm CĐ, CT của đồ thị là
Suy ra A B = 2
và phương trình đường thẳng x + y - 2 m 3 - 3 m 2 - m - 1 = 0
Do đó, tam giác MAB có diện tích nhỏ nhất khi và chỉ khi khoảng cách từ M tới AB nhỏ nhất.
Ta có:
⇒ đạt được khi m = 0
Đáp án A
Xét hàm số y = x 4 − 2 m x 2 + 2 m + m 4 , có y ' = 4 x 3 − 4 m x , ∀ x ∈ ℝ
Phương trình y ' = 0 ⇔ 4 x 3 − 4 m x = 0 ⇔ x x 2 − m = 0 ⇔ x = 0 x 2 = m *
Để hàm số có ba điểm cực trị ⇔ * có 2 nghiệm phân biệt khác 0
Khi đó, gọi A 0 ; 2 m + m 4 , B m ; m 4 − m 2 + 2 m , C − m ; m 4 − m 2 + 2 m là tọa độ ba điểm cực trị của đồ thị hàm số.
Tam giác ABC đều ⇔ A B 2 = B C 2 ⇔ m + m 4 = 4 m ⇔ m 4 = 3 m ⇔ m = 3 3
hs có 3 cực trị tạo thành đỉnh của một tam giác đều là
ta có b\(^3\)+24a=0
0