Cho Tam giác ABC tâm giác DEF, trong đó AB 6,5cm, góc D 70độ, AC 8cm. Tính DE, góc A,DF Giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Kẻ đường cao EH của tam giác
Xét tam giác vuông DEH vuông tại H ta có
sinD = EH/ED => EH = sinD . ED = sin600 . 6 = \(\frac{\sqrt[]{3}}{2}.6=3\sqrt{3}cm\)
Diện tích tam giác DEF là : \(\frac{1}{2}\times EH\times DF=\frac{1}{2}.3\sqrt{3}.8=12\sqrt{3}\left(cm^2\right)\)
b)xét tam giác EDH có: DH = cosD . ED = 1/2 . 6 = 3 cm
ta lại có: HF = DF - DH = 8 - 3 = 5 cm
Xét tam giác vuông EHF. theo pitago ta có
EF2 = EH2 + HF = \(\left(3\sqrt{3}\right)^2+5^2=27+25=52\)
EF = \(\sqrt{52}\)
Xét ΔABC có BM là đường phân giác
nên AM/AB=CM/CB
=>AM/3=CM/5
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AM}{3}=\dfrac{CM}{5}=\dfrac{AM+CM}{3+5}=\dfrac{4}{8}=\dfrac{1}{2}\)
Do đó: AM=1,5(cm)
Xét ΔABM vuông tại A và ΔDEF vuông tại D có
AB/DE=AM/DF
Do đó: ΔABM\(\sim\)ΔDEF
\(\Delta DEF\) cho ta \(\widehat{D}+\widehat{E}+\widehat{F}=180^0\)
\(\Rightarrow\widehat{D}=180^0-\left(\widehat{E}+\widehat{F}\right)\)
\(\Rightarrow\widehat{D}=180^0-\left(70^0+60^0\right)=180^0-130^0=50^0\)
\(Xét\) \(\Delta ABCvà\Delta DEFcó\)
\(\widehat{A}=\widehat{D}\left(=50^0\right)\)
AB=DE
AC=DF
\(\Rightarrow\Delta ABC=\Delta DEF\left(c-g-c\right)\)
Vậy \(\Delta ABC=\Delta DEF\)
bài1
a) EF=??
b) không đồng dạng
c) không đồng dạng
d) Đồng dạng (vì sao thì bạn nhắn cho mình nha)
các cặp góc bằng nhau ABC=DEF; BCA=EFD; CAB=FDE
bài 2
a) theo tính chất đường trung bình trong mỗi tam giác (không hiểu thì nhắn cho mình)
ta có MN=1/2AB => MN/AB=1/2 (1)
NM=1/2BC => NP/BC=1/2 (2)
MP=1/2AC => MP/AC=1/2 (3)
từ (1),(2),(3) => MNP đồng dạng với ABC
b) vì MNP đồng dạng với ABC với tỉ số k là 2 ( theo câu a)
nên chu vi ABC = 2 lần chu vi MNP =40cm