K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2023

Phương trình hoành độ giao điểm là:

\(x^2+x+1=-x^2+2x+4\)

=>\(x^2+x+1+x^2-2x-4=0\)

=>\(2x^2-x-3=0\)(1)

a=2; b=-1;c=-3

\(a\cdot c=2\cdot\left(-3\right)=-6< 0\)

=>Phương trình (1) có hai nghiệm phân biệt

Theo Vi-et, ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-1\right)}{2}=\dfrac{1}{2}\\x_1\cdot x_2=\dfrac{c}{a}=-\dfrac{3}{2}\end{matrix}\right.\)

\(P=x_1^3+x_2^3\)

\(=\left(x_1+x_2\right)^3-3\cdot x_1\cdot x_2\left(x_1+x_2\right)\)

\(=\left(\dfrac{1}{2}\right)^3-3\cdot\dfrac{-3}{2}\cdot\dfrac{1}{2}\)

\(=\dfrac{1}{8}+\dfrac{9}{4}=\dfrac{1}{8}+\dfrac{18}{8}=\dfrac{19}{8}\)

9 tháng 11 2017

Đáp án C

7 tháng 6 2017

Đáp án B

11 tháng 1 2018

Đáp án D

a: PTHĐGĐ là:

x^2+mx-m-2=0(1)

Khi m=2 thì (1) sẽ là

x^2+2x-2-2=0

=>x^2+2x-4=0

=>\(\left[{}\begin{matrix}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=6-2\sqrt{5}\\y=6+2\sqrt{5}\end{matrix}\right.\)

b: Δ=m^2-4(-m-2)

=m^2+4m+8

=(m+2)^2+4>0 với mọi x

=>(d) luôn cắt (P) tại hai điểm phân biệtx

x1^2+x2^2=7

=>(x1+x2)^2-2x1x2=7

=>(-m)^2-2(-m-2)=7

=>m^2+2m+4-7=0

=>m^2+2m-3=0

=>m=-3 hoặc m=1

8 tháng 7 2018

Xét phương trình hoành độ giao điểm: x2 – 2x + m – 1 = 0

Để parabol cắt Ox tại hai điểm phân biệt có hoành độ dương thì phương trình có hai nghiệm dương hay  

Chọn A.