Tìm GTNN của \(\sqrt{P}\). Biết: P=\(\dfrac{x}{\sqrt{x}-1}\) (x>0,x≠1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(A=\left(\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-3\sqrt{x}+1+8\sqrt{x}}{9x-1}\right):\dfrac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\)
\(=\dfrac{3x+\sqrt{x}-3\sqrt{x}-1+5\sqrt{x}+1}{9x-1}:\dfrac{3}{3\sqrt{x}+1}\)
\(=\dfrac{3x+3\sqrt{x}}{9x-1}\cdot\dfrac{3\sqrt{x}+1}{3}=\dfrac{x+\sqrt{x}}{3\sqrt{x}-1}\)
b: \(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(x-1\right)^2}{2}\)
\(=\dfrac{x-\sqrt{x}-2-x-\sqrt{x}+2}{1}\cdot\dfrac{\sqrt{x}-1}{2}\)
\(=-\sqrt{x}\left(\sqrt{x}-1\right)\)
a) \(B=\)\(\dfrac{\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}}{\dfrac{\sqrt{x}}{x+\sqrt{x}}}\) ĐKXĐ: x>0
=\(\dfrac{\dfrac{\sqrt{x}+1+\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}}{\dfrac{\sqrt{x}}{x+\sqrt{x}}}\)
\(=\dfrac{x+\sqrt{x}+1}{x+\sqrt{x}}:\dfrac{\sqrt{x}}{x+\sqrt{x}}\)
=\(\dfrac{x+\sqrt{x}+1}{x+\sqrt{x}}\times\dfrac{x+\sqrt{x}}{\sqrt{x}}\)
\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)
b)
Theo câu a ) ta có :
B=\(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)
Xét : \(x+\sqrt{x}+1=x+2.\sqrt{x}.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
=\(\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) (với mọi x>0) (1)
Xét:
\(\sqrt{x}>0\) (2)
Từ (1) và (2) =>\(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}>0\) (ĐPCM)
c) B=\(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\) ( theo câu a)
=\(\dfrac{x}{\sqrt{x}}+\dfrac{1}{\sqrt{x}}+1\)
=\(\sqrt{x}+\dfrac{1}{\sqrt{x}}+1\)
Áp dụng BĐT cô si cho \(\sqrt{x}\)và \(\dfrac{1}{\sqrt{x}}\)
Ta có : \(\sqrt{x}+\dfrac{1}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\dfrac{1}{\sqrt{x}}}\)
=2
Vậy :\(\sqrt{x}+\dfrac{1}{\sqrt{x}}+1\ge2+1\)
Hay\(\sqrt{x}+\dfrac{1}{\sqrt{x}}+1\ge3\)
Min B= 3 Dấu "=" xảy ra khi x=1
CHÚC BẠN HỌC TỐT
\(a,P=\dfrac{\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{2-\sqrt{x}}{\sqrt{x}}=\dfrac{-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}=\dfrac{-2}{\sqrt{x}+2}\\ P=-\dfrac{3}{5}\Leftrightarrow\dfrac{2}{\sqrt{x}+2}=\dfrac{3}{5}\\ \Leftrightarrow3\sqrt{x}+6=10\Leftrightarrow\sqrt{x}=\dfrac{4}{3}\Leftrightarrow x=\dfrac{16}{9}\left(tm\right)\)
\(P=-\dfrac{3}{5}\) sao suy ra đc \(\dfrac{2}{\sqrt{x}+2}=\dfrac{3}{5}\) thế
1) Áp dụng bđt Cauchy cho 3 số dương ta có
\(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}+x^3\ge4\sqrt[4]{\dfrac{1}{x}.\dfrac{1}{x}.\dfrac{1}{x}.x^3}=4\) (1)
\(\dfrac{3}{y^2}+y^2\ge2\sqrt{\dfrac{3}{y^2}.y^2}=2\sqrt{3}\) (2)
\(\dfrac{3}{z^3}+z=\dfrac{3}{z^3}+\dfrac{z}{3}+\dfrac{z}{3}+\dfrac{z}{3}\ge4\sqrt[4]{\dfrac{3}{z^3}.\dfrac{z}{3}.\dfrac{z}{3}.\dfrac{z}{3}}=4\sqrt{3}\) (3)
Cộng (1);(2);(3) theo vế ta được
\(\left(\dfrac{3}{x}+\dfrac{3}{y^2}+\dfrac{3}{z^3}\right)+\left(x^3+y^2+z\right)\ge4+2\sqrt{3}+4\sqrt{3}\)
\(\Leftrightarrow3\left(\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\right)\ge3+4\sqrt{3}\)
\(\Leftrightarrow P\ge\dfrac{3+4\sqrt{3}}{3}\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{x}=x^3\\\dfrac{3}{y^2}=y^2\\\dfrac{3}{z^3}=\dfrac{z}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\sqrt[4]{3}\\z=\sqrt{3}\end{matrix}\right.\) (thỏa mãn giả thiết ban đầu)
2) Ta có \(4\sqrt{ab}=2.\sqrt{a}.2\sqrt{b}\le a+4b\)
Dấu"=" khi a = 4b
nên \(\dfrac{8}{7a+4b+4\sqrt{ab}}\ge\dfrac{8}{7a+4b+a+4b}=\dfrac{1}{a+b}\)
Khi đó \(P\ge\dfrac{1}{a+b}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)
Đặt \(\sqrt{a+b}=t>0\) ta được
\(P\ge\dfrac{1}{t^2}-\dfrac{1}{t}+t=\left(\dfrac{1}{t^2}-\dfrac{2}{t}+1\right)+\dfrac{1}{t}+t-1\)
\(=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\)
Có \(\dfrac{1}{t}+t\ge2\sqrt{\dfrac{1}{t}.t}=2\) (BĐT Cauchy cho 2 số dương)
nên \(P=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\ge\left(\dfrac{1}{t}-1\right)^2+1\ge1\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{t}-1=0\\t=\dfrac{1}{t}\end{matrix}\right.\Leftrightarrow t=1\)(tm)
khi đó a + b = 1
mà a = 4b nên \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)
Vậy MinP = 1 khi \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)
Lời giải:
\(P=\left[\frac{\sqrt{x}+1}{(\sqrt{x}+1)(\sqrt{x}-1)}+\frac{x}{\sqrt{x}(\sqrt{x}-1)}\right]:\frac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\left[\frac{1}{\sqrt{x}-1}+\frac{\sqrt{x}}{\sqrt{x}-1}\right].\frac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}-1}.\frac{\sqrt{x}}{\sqrt{x}+1}=\frac{\sqrt{x}}{\sqrt{x}-1}\)
b. Áp dụng BĐT AM-GM
\(M=P\sqrt{x}=\frac{x}{\sqrt{x}-1}=\frac{x-1+1}{\sqrt{x}-1}=\sqrt{x}+1+\frac{1}{\sqrt{x}-1}\)
\(=(\sqrt{x}-1)+\frac{1}{\sqrt{x}-1}+2\geq 2\sqrt{(\sqrt{x}-1).\frac{1}{\sqrt{x}-1}}+2=2+2=4\)
Vậy $M_{\min}=4$ khi $\sqrt{x}-1=\frac{1}{\sqrt{x}-1}$
$\Rightarrow \sqrt{x}-1=0$
$\Leftrightarrow x=1$
\(P=\dfrac{x}{\sqrt{x}-1}=\dfrac{x-1+1}{\sqrt{x}-1}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+1}{\sqrt{x}-1}=\sqrt{x}+1+\dfrac{1}{\sqrt{x}-1}=\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}+2\)
Theo BĐT Cô - Si cho hai số không âm ta có :
\(\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}\ge2\sqrt{\left(\sqrt{x}-1\right)\times\dfrac{1}{\left(\sqrt{x}-1\right)}}=2\)
\(\Rightarrow\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}+2\ge2+2=4\)
Vậy GTNN của P là 4 thì GTNN của \(\sqrt{P}\) sẽ là 2 .
Dấu \("="\) xảy ra khi \(\sqrt{x}-1=\dfrac{1}{\sqrt{x}-1}\) ( Bạn tự giải ra nhé :3 )