27x^3+?+81x+27=(3x+3)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d,Sửa đề
\(-x^3+6x^2-12x+8\)
\(=-\left(x^3-6x^2+12x-8\right)\)
\(=-\left(x^3-3.x^2.2+3.x.2^2-2^3\right)\)
\(=-\left(x-2\right)^3\)
\(e,27x^3+81x^2+81x+27\)
\(=27\left(x^3+3x^2+3x+1\right)\)
\(=27\left(x+1\right)^3\)
b: \(x^3+\dfrac{1}{27}=\left(x+\dfrac{1}{3}\right)\left(x^2-\dfrac{1}{3}x+\dfrac{1}{9}\right)\)
c: \(x^3-3x^2+3x-1=\left(x-1\right)^3\)
e: \(a^2y^2-2axby+b^2x^2\)
\(=\left(ay\right)^2-2\cdot ay\cdot bx+\left(bx\right)^2\)
\(=\left(ay-bx\right)^2\)
f: \(100-\left(3x-y\right)^2\)
\(=\left(10-3x+y\right)\left(10+3x-y\right)\)
g: \(64x^2-\left(8a+b\right)^2\)
\(=\left(8x\right)^2-\left(8a+b\right)^2\)
\(=\left(8x-8a-b\right)\left(8x+8a+b\right)\)
a: \(=\left(x+1+5\right)\left(x+1-5\right)=\left(x+6\right)\left(x-4\right)\)
b: =(1-2x)(1+2x)
c: \(=\left(2-3x\right)\left(4+6x+9x^2\right)\)
d: =(x+3)^3
e: \(=\left(2x-y\right)^3\)
f: =(x+2y)(x^2-2xy+4y^2)
\(x^2+x+\dfrac{1}{4}=\left(x+\dfrac{1}{4}\right)^2\)
\(8x^3+27=\left(2x+3\right)\left(4x^2-6x+9\right)\)
\(-x^3+3x^2-3x+1=\left(-x+1\right)^3\)
\(27x^2+42x+6=3\sqrt{81x^4+4}\)
\(\Leftrightarrow9\left(9x^2+14x+2\right)^2=9\left(81x^4+4\right)\)
\(\Leftrightarrow\left(9x^2+14x+2\right)^2-81x^4-4=0\)
\(\Leftrightarrow x=0\)
a: Sửa đề: \(M=3x-\sqrt[3]{27x^3+27x^2+9x+1}\)
\(=3x-\sqrt[3]{\left(3x\right)^3+3\cdot\left(3x\right)^2\cdot1+3\cdot3x\cdot1^2+1^3}\)
\(=3x-\sqrt[3]{\left(3x+1\right)^3}\)
\(=3x-3x-1=-1\)
b: \(N=\sqrt[3]{8x^3+12x^2+6x+1}-\sqrt[3]{x^3}\)
\(=\sqrt[3]{\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2+1^3}-x\)
\(=\sqrt[3]{\left(2x+1\right)^3}-x\)
=2x+1-x
=x+1
\(1-27x^3\)
\(=1-\left(3x\right)^3\)
\(=\left(1-3x\right)\left(1+3x+9x^2\right)\)
\(---\)
\(x-3^3+27\)
\(=x-27+27=x\)
\(---\)
\(27x^3+27x^2+9x+1\)
\(=\left(3x\right)^3+3\cdot\left(3x\right)^2\cdot1+3\cdot3x\cdot1^2+1^3\)
\(=\left(3x+1\right)^3\)
\(---\)
\(\dfrac{x^6}{27}-\dfrac{x^4y}{3}+x^2y^2-y^3\) (sửa đề)
\(=\left(\dfrac{x^2}{3}\right)^3-3\cdot\left(\dfrac{x^2}{3}\right)^2\cdot y+3\cdot\dfrac{x^2}{3}\cdot y^2-y^3\)
\(=\left(\dfrac{x^2}{3}-y\right)^3\)
#Ayumu
(3x+3)^2 = 27x^3+81x^2+81x+27
=> ? = 81x^2