K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2018

a.1+sin^2x+cos^2x=1+(sin^2+cos^2)=1+1=2

a: =1+1=2

b: \(=\sin x\left(1-\cos^2x\right)=sinx\cdot sin^2x=sin^3x\)

c: \(=cos^2x\left(1+tg^2x\right)=cos^2x\cdot\dfrac{1}{cos^2x}=1\)

d: \(=\dfrac{cos58^0}{cos58^0}=1\)

NV
11 tháng 4 2019

\(P=\frac{1-sin^2x.cos^2x}{cos^2x}-cos^2x=\frac{1}{cos^2x}-sin^2x-cos^2x\)

\(=1+tan^2x-\left(sin^2x+cos^2x\right)=1+tan^2x-1=tan^2x\)

\(M=\frac{2cos^2x-1}{sinx+cosx}=\frac{2cos^2x-\left(sin^2x+cos^2x\right)}{sinx+cosx}=\frac{cos^2x-sin^2x}{sinx+cosx}\)

\(\frac{\left(cosx-sinx\right)\left(cosx+sinx\right)}{sinx+cosx}=cosx-sinx\)

NV
19 tháng 2 2020

\(sina\sqrt{1+\frac{sin^2a}{cos^2a}}=sina\sqrt{\frac{cos^2a+sin^2a}{cos^2a}}=\frac{sina}{\left|cosa\right|}=\pm tana\)

\(\frac{1-cos^2x}{1-sin^2x}+tanx.cotx=\frac{sin^2x}{cos^2x}+\frac{sinx}{cosx}.\frac{cosx}{sinx}=tan^2x+1=\frac{1}{cos^2x}\)

\(\frac{1-4sin^2xcos^2x}{\left(sinx+cosx\right)^2}=\frac{\left(1-2sinx.cosx\right)\left(1+2sinx.cosx\right)}{sin^2x+cos^2x+2sinx.cosx}=\frac{\left(1-sin2x\right)\left(1+2sinx.cosx\right)}{1+2sinx.cosx}=1-2sinx\)

\(sin\left(90-x\right)+cos\left(180-x\right)+sin^2x\left(1+tan^2x\right)-tan^2x\)

\(=cosx-cosx+sin^2x.\frac{1}{cos^2x}-tan^2x=tan^2x-tan^2x=0\)

16 tháng 7 2021

a ) \(2cosx-3sinx+2=0\) 

\(\Leftrightarrow2cosx-3sinx=-2\)  

\(\Leftrightarrow\dfrac{2}{\sqrt{13}}cosx-\dfrac{3}{\sqrt{13}}sinx=-\dfrac{2}{\sqrt{13}}\) 

Thấy : \(\left(\dfrac{2}{\sqrt{13}}\right)^2+\left(\dfrac{-3}{\sqrt{13}}\right)^2=1\) nên tồn tại \(\alpha\) t/m : 

\(sin\alpha=\dfrac{2}{\sqrt{13}};cos\alpha=\dfrac{-3}{\sqrt{13}}\) . . Khi đó : \(sin\alpha.cosx+cos\alpha.sinx=\dfrac{-2}{\sqrt{13}}\)

\(\Leftrightarrow sin\left(\alpha+x\right)=\dfrac{-2}{\sqrt{13}}\) ( p/t cơ bản ) 

 

16 tháng 7 2021

b ) \(\dfrac{1+sinx}{1+cosx}=\dfrac{1}{2}\) ( ĐK : \(cosx\ne-1\Leftrightarrow x\ne\left(2k+1\right)\pi\) ; ( k thuộc Z )  ) 

\(\Leftrightarrow2+2sinx=cosx+1\) \(\Leftrightarrow cosx-2sinx=1\) 

Làm giống như a )  

6 tháng 7 2018

tích đúng mình làm cho

6 tháng 7 2018

mình không hiểu 

24 tháng 11 2017

a) (1 -cosx)(1+cosx)

=\(\left(1-cos^2x\right)-sin^2x\)

=\(sin^2x-sin^2x\)

=0

b) tan\(^2x\)(2cos\(^2x\)+sin\(^2x\)-1) +cos\(^2x\)

\(=tan^2x\left(cos^2x+cos^2x+sin^2x-1\right)\)+\(cos^2x\)

=\(tan^2x\left(cos^2x+1-1\right)+cós^2x\)

\(=tan^2x.cos^2x+cos^2x \)

=\(\dfrac{sin^2x}{cos^2x}.cos^2x+cos^2x\)

=\(sin^2x+cos^2x\)

=1

NV
21 tháng 1 2021

a.

Tổng là cấp số nhân lùi vô hạn với \(\left\{{}\begin{matrix}u_1=1\\q=-sin^2x\end{matrix}\right.\)

Do đó: \(S=\dfrac{u_1}{1-q}=\dfrac{1}{1+sin^2x}\)

b. Tương tự, tổng cấp số nhân lùi vô hạn với \(\left\{{}\begin{matrix}u_1=1\\q=cos^2x\end{matrix}\right.\)

\(\Rightarrow S=\dfrac{1}{1-cos^2x}=\dfrac{1}{sin^2x}\)

c. Do \(0< x< \dfrac{\pi}{4}\Rightarrow0< tanx< 1\)

Tổng trên vẫn là tổng cấp số nhân lùi vô hạn với \(\left\{{}\begin{matrix}u_1=1\\q=-tanx\end{matrix}\right.\)

\(\Rightarrow S=\dfrac{1}{1+tanx}\)