K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2023

Qua A kẻ đường thẳng vuông góc với AM cắt tia BC tại E.

Tam giác AEM vuông tại A có \(AB\perp EM\)

Ta có: \(S_{AEM}=\dfrac{1}{2}AE.AM=\dfrac{1}{2}AB.ME\)

\(\Rightarrow AE.AM=AB.ME\\ \Rightarrow\dfrac{1}{AB}=\dfrac{ME}{AE.AM}\\ \Rightarrow\dfrac{1}{AB^2}=\dfrac{ME^2}{AE^2.AM^2}\left(1\right)\)

Áp dụng đl pytago vào tam giác vuông AEM:

\(AE^2+AM^2=ME^2\)

Thay vào (1) ta có:

\(\dfrac{1}{AB^2}=\dfrac{ME^2}{AE^2.AM^2}=\dfrac{AE^2+AM^2}{AE^2.AM^2}=\dfrac{1}{AE^2}+\dfrac{1}{AM^2}\)

Mà AE = AN nên: \(\dfrac{1}{AB^2}=\dfrac{1}{AM^2}+\dfrac{1}{AN^2}\)

23 tháng 8 2023

Để chứng minh 1) AE = AN, ta sẽ sử dụng định lí hai đường trung bình của tam giác.Theo định lí hai đường trung bình, AM là đường trung bình của tam giác ABC.Vì vậy, ta có AM = 1/2(AB + AC).Đồng thời, ta cũng có AN là đường trung bình của tam giác ADC.Từ đó, ta có AN = 1/2(AD + AC).Do đó, để chứng minh AE = AN, ta cần chứng minh AE = 1/2(AB + AD).Ta biết rằng AE là đường cao của tam giác ABC với cạnh AB.Vì vậy, ta có AE = √(AB^2 - AM^2) (với AM là đường trung bình của tam giác ABC)Tương tự, ta biết rằng AN là đường cao của tam giác ADC với cạnh AD.Vì vậy, ta cũng có AN = √(AD^2 - AM^2) (với AM là đường trung bình của tam giác ADC)

23 tháng 8 2023

gì vậy?

12 tháng 6 2021

Từ A kẻ đường thẳng vuông góc với AN cắt CD tại Q

Ta có: \(\angle MAQ+\angle MCQ=90+90=180\Rightarrow AMCQ\) nội tiếp

\(\Rightarrow\angle AMQ=\angle ACQ=45\) mà \(\Delta MAQ\) vuông tại A 

\(\Rightarrow\Delta MAQ\) vuông cân tại A \(\Rightarrow AM=AQ\)

Áp dụng hệ thức lượng vào tam giác vuông \(QAN\) có \(AD\bot NQ\)

\(\Rightarrow\dfrac{1}{AD^2}=\dfrac{1}{AQ^2}+\dfrac{1}{AN^2}\Rightarrow\dfrac{1}{AB^2}=\dfrac{1}{AM^2}+\dfrac{1}{AN^2}\)undefined

 

7 tháng 9 2021

\(AB//CF\) ,áp dụng định lí Talet: 

\(\dfrac{AE}{EF}=\dfrac{BE}{EC}\Rightarrow\dfrac{AE}{AF}=\dfrac{BE}{BC}\Rightarrow\dfrac{AE^2}{AF^2}=\dfrac{BE^2}{BC^2}\\ \Rightarrow\dfrac{AE^2}{AF^2}=\dfrac{AE^2-AB^2}{BC^2}=\dfrac{AE^2}{BC^2}-\left(\dfrac{AB}{BC}\right)^2\left(pytago\right)\\ \Rightarrow\dfrac{AE^2}{AF^2}=\dfrac{AE^2}{BC^2}-9=\dfrac{AE^2}{\dfrac{1}{9}AB^2}-9\\ \Rightarrow\dfrac{AE^2}{AF^2}+9=\dfrac{9AE^2}{AB^2}\\ \Rightarrow\dfrac{1}{AF^2}+\dfrac{9}{AE^2}=\dfrac{9}{AB^2}\)

 

a: Xét ΔABM vuông tại B và ΔADN vuông tại D có

AB=AD

góc BAM=góc DAN

=>ΔABM=ΔADN

=>AM=AN

=>ΔAMN vuông cân tại A

b: 1/AM^2+1/AE^2

=1/AN^2+1/AE^2

=1/AD^2 ko đổi

AH
Akai Haruma
Giáo viên
10 tháng 5 2021

Câu 1:

$A+2=\frac{2}{2-x^2}+\frac{2}{x^2+1}=2(\frac{1}{2-x^2}+\frac{1}{x^2+1})$

$\geq 2.\frac{4}{2-x^2+x^2+1}=\frac{8}{3}$ (áp dụng BĐT Cauchy-Schwarz)

$\Rightarrow A\geq \frac{2}{3}$

Vậy $A_{\min}=\frac{2}{3}$ khi $x=\frac{1}{\sqrt{2}}$

Mặt khác:

\(A-1=\frac{2(x^2-1)}{2-x^2}+\frac{1-x^2}{1+x^2}=\frac{3x^2(x^2-1)}{(2-x^2)(x^2+1)}\leq 0\) với mọi $0\leq x\leq 1$

$\Rightarrow A\leq 1$

Vậy $A_{\max}=1$ khi $x=0$ hoặc $x=1$

AH
Akai Haruma
Giáo viên
10 tháng 5 2021

Lời giải:

Gọi cạnh hình vuông là $a$

a) Áp dụng định lý Pitago cho các tam giác vuông sau:

Tam giác $ADM$: $AM=\sqrt{AD^2+DM^2}=\sqrt{a^2+(\frac{a}{2})^2}=\frac{\sqrt{5}}{2}a$

$AH=\sqrt{AB^2+BH^2}=\sqrt{a^2+(\frac{a}{3})^2}=\frac{\sqrt{10}}{3}a(1)$

$AB\parallel DM$ nên theo định lý Talet:

$\frac{AN}{NM}=\frac{AB}{DM}=2$

$\Rightarrow \frac{AN}{AM}=\frac{2}{3}$

$\Rightarrow AN=\frac{\sqrt{5}}{3}a(2)$

Mặt khác:

$\frac{BN}{DN}=\frac{AB}{DM}=2=\frac{BK}{KC}$ nên $NK\parallel DC$ (theo Talet đảo)

$\Rightarrow NK\perp BC$

$\frac{NK}{DC}=\frac{BK}{BC}=\frac{2}{3}\Rightarrow NK=\frac{2}{3}a$

Áp dụng định lý Pitago: $NH=\sqrt{NK^2+KH^2}=\sqrt{(\frac{2}{3}a)^2+(\frac{a}{3})^2}=\frac{\sqrt{5}}{3}a(3)$

Từ $(1);(2);(3)$ kết hợp Pitago đảo suy ra $ANH$ vuông cân tại $N$.

b) 

Cho $AC$ cắt $NK$ tại $Q$

Theo định lý Talet:

$\frac{NQ}{MC}=\frac{AQ}{AC}=\frac{BK}{BC}=\frac{2}{3}$

$\Rightarrow \frac{NQ}{a}=\frac{1}{3}(4)$

$\frac{QK}{a}=\frac{QK}{AB}=\frac{KC}{BC}=\frac{1}{3}(5)$

Từ $(4);(5)\Rightarrow \frac{NQ}{a}=\frac{QK}{a}$

$\Rightarrow NQ=QK$ nên $Q$ là trung điểm $NK$

Do đó ta có đpcm.

 

27 tháng 3 2018

M thuộc cạnh AB hay là CD vậy bạn

14 tháng 1 2019

M thuộc AB bạn ạ