cho hình chóp S.ABCD có đáy ABCD là hình thoi. Mặt bên (SAB) là tam giác vuông cân tại S và thuộc mặt phẳng vuông góc với mặt phẳng (ABCD). Tính thể tích khối chóp S.ABCD biết BD=a, AC=a√3. Em đang cần gấp nên mong mn giải dùm ạ!
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
CM
28 tháng 9 2019
Gọi O là giao điểm của AC và BD.
ABCD là hình thoi ⇒ AC ⊥ BD,
Vì O là trung điểm của AC, BD nên:
CM
29 tháng 4 2018
Đáp án B
Phương pháp:
Xác định góc giữa hai mặt phẳng (α;β)
- Tìm giao tuyến Δ của (α;β)
- Xác định 1 mặt phẳng γ ⊥ Δ
- Tìm các giao tuyến a = α∩γ, b = β ∩ γ
- Góc giữa hai mặt phẳng (α;β):(α;β) = (a;b)
Cách giải:
Gọi I, J lần lượt là trung điểm của AB, CD.
Tam giác SAB cân tại S ⇒ SI ⊥ AB
Vì mặt bên SAB nằm trong mặt phẳng vuông góc với (ABCD) nên SI ⊥ (ABCD)
Lời giải:
Kẻ \(SH\perp BA\)
Vì \((SAB)\perp (ABCD); (SAB)\cap (ABCD)=BA\) nên \(SH\perp (ABCD)\)
Từ dữ kiện đề bài:
\(S_{ABCD}=AC.BD=a\sqrt{3}.a=\sqrt{3}a^2\)
Gọi \(O=AC\cap BD\). Theo tính chất hình thoi:
\(AO=\frac{AC}{2}=\frac{\sqrt{3}a}{2}; BO=\frac{BD}{2}=\frac{a}{2}\)
\(\rightarrow AB=\sqrt{AO^2+BO^2}=a\)
Vì $SAB$ vuông cân tại $S$ nên \(SB=SA=\frac{AB}{\sqrt{2}}=\frac{a}{\sqrt{2}}\)
\(S_{SAB}=\frac{SA.SB}{2}=\frac{SH.AB}{2}\rightarrow SH=\frac{SA.SB}{AB}=\frac{\frac{a}{\sqrt{2}}.\frac{a}{\sqrt{2}}}{a}=\frac{a}{2}\)
Vậy:
\(V_{S.ABCD}=\frac{1}{3}SH.S_{ABCD}=\frac{1}{3}.\frac{a}{2}.\sqrt{3}a^2=\frac{\sqrt{3}a^3}{6}\)