1/2018 + 2/2018 + 3/2018 +............+ 2016/2018+ 2017/2018
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Gọi A là tổng của dãy số: 1+ 2 + 3 + 4 + ... + 2016 + 2017 + 2018.
+) Số số hạng của A là:
A = (2018 - 1) : 1 + 1 = 2018.
+) Tổng A là: (2018 + 1). 2018 : 1 = 4074342.
Vậy, A = 4074342 (hay 1+ 2 + 3 + 4 + ... + 2016 + 2017 + 2018 = 4074342).
Ta có :
\(\frac{2016}{2017}>\frac{2016}{2017+2018+2019}\)
\(\frac{2017}{2018}>\frac{2017}{2017+2018+2019}\)
\(\frac{2018}{2019}>\frac{2018}{2017+2018+2019}\)
\(\Rightarrow\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}>\) \(\frac{2016}{2017+2018+2019}+\frac{2017}{2017+2018+2019}+\frac{2018}{2017+2018+2019}\)
\(\Rightarrow P>\frac{2016+2017+2018}{2017+2018+2019}\)
\(\Rightarrow P>Q\)
Chúc bạn học tốt !!!
vì P có các số bé hơn 1 còn Q có các số lớn hơn 1 =>P<Q
Vậy P<Q.
mình làm hơi tắt xin bạn thông cảm bạn tự viết các số có trong P;Q ra nhá
Số số hạng là 2017-1+1=2017(số)
Tổng các số từ 1 đến 2017 là: \(\left(2017\right)\cdot\dfrac{\left(2017-1\right)}{2}=2017\cdot1008\)
Tổng là:
\(A=\dfrac{2017\cdot1008}{2018}\simeq1007.5\)