Tìm x biết:x^2-x+1/4=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x + 1 : 0,75 = 1,4 : 0,25
<=> \(x+\dfrac{4}{3}=5,6\)
<=> \(x=\dfrac{64}{15}\)
Vì x, y > 0
Đặt \(\frac{x}{5}=\frac{y}{4}=k\Rightarrow\hept{\begin{cases}x=5k\\y=4k\end{cases}}\)( k > 0 )
x2 - y2 = 4
<=> ( 5k )2 - ( 4k )2 = 4
<=> 25k2 - 16k2 = 4
<=> 9k2 = 4
<=> k2 = 4/9
<=> k = 2/3 ( vì k > 0 )
=> \(\hept{\begin{cases}x=5\cdot\frac{2}{3}=\frac{10}{3}\\y=4\cdot\frac{2}{3}=\frac{8}{3}\end{cases}}\)
heeweghjk/k uubunnnnnnnnnnbhtytcvbyu74xui b bbbbfk44xxxxxxxxxxxxxxxxxxxx56yh6 6rrrrr6r iiiii6irixmx rj 6 5556666666crlxxx8 rr6xxxxxxxxxxxxxxtr4444 tyjrttttttttttttttttr5xyyu
\(\Rightarrow x+\frac{1}{2}+x+\frac{1}{3}+x+\frac{1}{4}+x+\frac{1}{5}-x+\frac{1}{6}=0\)
\(\Rightarrow3x+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\)
k cho minh
\(x+\frac{1}{2}+x+\frac{1}{3}+x+\frac{1}{4}+x+\frac{1}{5}=x+\frac{1}{6}\)
\(\Leftrightarrow x+\frac{1}{2}+x+\frac{1}{3}+x+\frac{1}{4}+x+\frac{1}{5}-x-\frac{1}{6}=0\)
\(\Leftrightarrow3x+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}-\frac{1}{6}=0\)
Tính ra nhé !
\(\frac{x+2}{x-5}< 0\) <=> x+2 và x-5 trái dấu
Mà x+2 > x-5
Nên x+2 > 0 và x-5 < 0
=>x > -2 và x < 5
Vậy -2 <x <5
Ta có: \(x+2\sqrt{2}.x^2+2x^3=0\)
\(\Leftrightarrow x\left(1+2\sqrt{2}.x+2x^2\right)=0\)
\(\Leftrightarrow x\left[1^2+2.x\sqrt{2}.1+\left(x\sqrt{2}\right)^2\right]=0\)
\(\Leftrightarrow x\left(1+x\sqrt{2}\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\1+x\sqrt{2}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{-1}{\sqrt{2}}\end{cases}}\)
Vậy\(x\in\left\{0;\frac{-1}{\sqrt{2}}\right\}\)
\(x+2\sqrt{2}x^2+2x^3=0\)
\(x\left(1+2\sqrt{2}x+2x^2\right)=0\)
\(x\left(2\sqrt{2}x+1\right)^2=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\2\sqrt{2}x+1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2x\sqrt{2}}\end{cases}}\)
\(x^2-x+\dfrac{1}{4}=0\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\)
\(\Leftrightarrow x-\dfrac{1}{2}=0\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy \(x=\dfrac{1}{2}\)
Wish you study well !!