K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2016

a) ta có theo công thức lượng giác : 

xét trong tam giác vuông AHB ta có AK.AB=AH2

mặt khác trong tam giác vuông ABC có : AH2=HC.HB 

=> AK.AB=HB.HC (=AH2)

 

27 tháng 7 2019

Câu a), b), c) bạn tham khảo tại đây nhé: Câu hỏi của Sky Mtp

Còn câu d) thì ở đây nhé: Câu hỏi của Hana Huyền Ngọc

Chúc bạn học tốt!

25 tháng 7 2018

a) Áp dụng hệ thức lượng trong \(\Delta vAHB\), ta có:

\(AH^2=AM\cdot AB\left(1\right)\)

Áp dụng hệ thức lượng trong \(\Delta vAHC\), ta có:

\(AH^2=AN\cdot AC\left(2\right)\)

Từ(1) và (2) ta được: \(AM\cdot AB=AN\cdot AC\)

b) Ta có: MHNA là hình chữ nhật(pn tự cm nha cái này dễ)

\(\Rightarrow MH=AN\)

Áp dụng hệ thức lượng trong \(\Delta vAHC\), ta có:

\(HN^2=AN\cdot NC\)

Áp dụng hệ thức lượng trong \(\Delta vAHB\), ta có:

\(HM^2=AM\cdot MB\)

Áp dụng hệ thức lượng trong \(\Delta vAHN\), ta có:

\(AN^2+HN^2=AH^2\)

\(MH=AN\)

\(\Rightarrow MH^2+HN^2=AH^2\)

\(\Rightarrow BM\cdot MA+AN\cdot NC=BH\cdot HC\)

c) Áp dụng hệ thức lượng trong \(\Delta vABC\), ta có:

\(AC^2=HC\cdot BC\left(1\right)\)

Áp dụng hệ thức lượng trong \(\Delta vABC\), ta có:

\(AB^2=HB\cdot BC\left(2\right)\)

Lấy (2) chia (1) ta được: \(\dfrac{HB}{HC}=\left(\dfrac{AB}{AC}\right)^2\)

d) Áp dụng hệ thức lượng trong \(\Delta vABC\), ta có:

\(AC^2=HC\cdot BC\Rightarrow AC^4=HC^2\cdot BC^2\)

\(\Rightarrow AC^4=NC\cdot AC\cdot BC^2\Rightarrow AC^3=NC\cdot BC^2\left(1\right)\)

Áp dụng hệ thức lượng trong \(\Delta vABC\), ta có:

\(AB^2=HB\cdot BC\Rightarrow AB^4=HB^2\cdot BC^2\)

\(\Rightarrow AB^4=BM\cdot AB\cdot BC^2\Rightarrow AB^3=BM\cdot BC^2\left(2\right)\)

Lấy (2) chia (1) ta được: \(\dfrac{BM}{CN}=\left(\dfrac{AB}{AC}\right)^3\)

16 tháng 6 2016

a) tam giác AKH vuông tại K và tam giác AHB vuông tại H có

góc KAH =góc HAB 

=> tam giác AKH đồng dạng tam giác AHB (g-g)

=> AK/AH=AH/AB

=> AH^2=AK.AB (1)

tam giác ABC vuông tại A=> AH^2=BH.CH (hệ thức lượng tam giác vuông )

(1),(2)=> AK.AB=BH.CH (đpcm)

b) đề sai bn nhé phải là cm AB^2/AC^2=HB/HC 

ta có AB^2=BH.BC (hệ thức lượng tam giác vuông )

ta có AC^2=HC.BC (hệ thức lượng tam giác vuông )

=> \(\frac{AB^2}{AC^2}=\frac{BH.BC}{CH.BC}=\frac{BH}{CH}\left(đpcm\right)\)

Bài 2: 

a: \(BC=\sqrt{10^2+8^2}=2\sqrt{41}\left(cm\right)\)

\(AH=\dfrac{8\cdot10}{2\sqrt{41}}=\dfrac{40}{\sqrt{41}}\left(cm\right)\)

\(BH=\dfrac{64}{2\sqrt{41}}=\dfrac{32}{\sqrt{41}}\left(cm\right)\)

\(CH=\dfrac{100}{2\sqrt{41}}=\dfrac{50}{\sqrt{41}}\left(cm\right)\)

b: \(\dfrac{AD}{BD}=\dfrac{AH^2}{AB}:\dfrac{BH^2}{AB}=\dfrac{AH^2}{BH^2}\)

6 tháng 10 2018

A K C H M I B

Xét \(\Delta\)ABC vuông ở A có đường cao AH:

=>(1) AB2=BH.BC

(2) AC2=HC.BC(hệ thức lượng)

=>\(\dfrac{AB^2}{AC^2}=\dfrac{HB\cdot BC}{HC\cdot BC}=\dfrac{HB}{HC}\)

a: \(\dfrac{AB^2}{AC^2}=\dfrac{HB\cdot BC}{HC\cdot BC}=\dfrac{HB}{HC}\)

b: \(AI\cdot AB=AH^2\)

\(AK\cdot AC=AH^2\)

Do đó: \(AI\cdot AB=AK\cdot AC\)

c: góc MAC=góc C

góc AKI=góc AHI=góc B

=>góc MAC+góc AKI=90 độ

=>AM vuông góc với KI

a: \(\dfrac{EB}{FC}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{AC}\)

\(=\dfrac{BH^2}{CH^2}\cdot\dfrac{AC}{AB}\)

\(=\left(\dfrac{AB}{AC}\right)^4\cdot\dfrac{AC}{AB}=\dfrac{AB^3}{AC^3}\)

b: \(BC\cdot BE\cdot CF\)

\(=BC\cdot\dfrac{BH^2}{AB}\cdot\dfrac{CH^2}{AC}\)

\(=\dfrac{AB\cdot AC}{AH}\cdot\dfrac{AH^4}{AB\cdot AC}=AH^3\)

23 tháng 5 2018

A B C H E D a)Xét tam giác HAC và tam giác ABC có :

Góc AHC = góc BAC ( = 90o)

Góc BCA chung

⇒ Tam giác HAC ~ Tam giác ABC ( TH3 )

b) Xét tam giác AHD và tam giác ABH có :

Góc HAB chung

Góc ADH = Góc AHB ( = 90o)

⇒ Tam giác AHD ~ Tam giác ABH ( TH3)

\(\dfrac{AH}{AB}=\dfrac{AD}{AH}\)

⇒ AH2 = AB.AD

c) Xét tam giác AEH và tam giác AHC có :

Góc HAC chung

Góc AEH = góc AHC ( = 90o)

⇒ Tam giác AEH ~ Tam giác AHC ( TH3)

\(\dfrac{AE}{AH}=\dfrac{AH}{AC}\)

⇒ AH2 = AE.AC

Mà : AH2 = AD.AB ( Câu b)

⇒ AE.AC = AD.AB

d) Do : AE.AC = AD.AB ( Câu c)

\(\dfrac{AE}{AD}=\dfrac{AC}{AB}\)

Xét tam giác AED và tam giác ACB có :

Góc BAC chung

\(\dfrac{AE}{AD}=\dfrac{AC}{AB}\) ( cmt)

⇒Tam giác AED ~ Tam giác ACB ( TH2)

\(\dfrac{S_{AED}}{S_{ACB}}=\left(\dfrac{AE}{AC}\right)^2\)

P/S : Hình như thiếu dữ kiện , chưa cho AH nên ko ra số cụ thể

22 tháng 5 2018

â)xét tam giác hac và tam giác abc có:

​góc c chung

góc ahc= góc bac=90 độ

​suy ra tam giác hac đồng dạng với tam giác abc(g.g)

b)xét tam giác ahb và tam giác adh có

góc ahb= góc adh=90 độ

góc a chung

suy ra tam giác ahb đồng dạng với tam giác adh(g.g)

ta có:ah^2=ab.ad

25 tháng 9 2021

Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\Rightarrow\dfrac{AB^2}{AC^2}=\dfrac{25}{36}\)

\(\Rightarrow\dfrac{BH.BC}{HC.BC}=\dfrac{25}{36}\Rightarrow BH=\dfrac{25}{36}HC\)

Áp dụng HTL trong tam giác ABC vg tại A có đg cao AH:

\(AH^2=BH.HC\)

\(\Rightarrow30^2=\dfrac{25}{36}HC.HC\Rightarrow HC^2=1296\Rightarrow HC=36\left(cm\right)\)

\(\Rightarrow BH=\dfrac{25}{36}HC=25\left(cm\right)\)