K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2015

Ta có: 31+32+33+…+399+3100

=(31+32)+(33+34)+…+(399+3100)

=3.(1+3)+33.(1+3)+…+399.(1+3)

=3.4+33.4+…+399.4

=(3+33+…+399).4 chia hết cho 4

=>31+32+33+…+399+3100 chia hết cho 4

24 tháng 10 2015

Đặt   \(A=3+3^2+3^3+...+3^{99}+3^{100}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\)

\(=3\left(1+3\right)+3^{ 3}\left(1+3\right)+...+3^{99}\left(1+3\right)\)

\(=\left(1+3\right)\left(3+3^3+...+3^{99}\right)\)

\(=4\left(3+3^3+...+3^{99}\right)\)

Vì 4 chia hết cho 4 nên \(4\left(3+3^3+...+3^{99}\right)\)

Vậy A chia hết cho 4

13 tháng 1 2018

Ta co

A=2-22+23-....-298+299-2100

  =2(1-2+4)-....-298(1-2+4)

 =2.3-...-298.3\(⋮3\)

Ma A chia het cho 2

  (2;3)=1

=> A chia het cho 6(DPCM)

2 tháng 4 2020

Câu hỏi của Phùng Tuệ Minh - Toán lớp 7 - Học toán với OnlineMath

9 tháng 7 2019

\(A=1+5+5^2+5^3+...+5^{99}\)

\(A=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{98}+5^{99}\right)\)

\(A=6+5^2\cdot6+...+5^{98}\cdot6\)

\(A=6\left(1+5^2+...+5^{98}\right)⋮6\)

\(B=1+5+5^2+5^3+...+5^{100}\)

\(B=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{98}+5^{99}\right)+5^{100}\)

\(B=6+6\cdot5^2+...+6\cdot5^{98}+5^{100}\)

\(B=6\left(1+5^2+...+5^{98}\right)+5^{100}\)

a ⋮ c; b không chia hết cho c => a + b  không chia hết cho c