CMR: 3^1 + 3^2 +3^3 ...+ 3^99 + 3^100 chia hết cho 4
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
NT
0
MX
1
F
1
2 tháng 4 2020
Câu hỏi của Phùng Tuệ Minh - Toán lớp 7 - Học toán với OnlineMath
AK
1
S
9 tháng 7 2019
\(A=1+5+5^2+5^3+...+5^{99}\)
\(A=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{98}+5^{99}\right)\)
\(A=6+5^2\cdot6+...+5^{98}\cdot6\)
\(A=6\left(1+5^2+...+5^{98}\right)⋮6\)
\(B=1+5+5^2+5^3+...+5^{100}\)
\(B=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{98}+5^{99}\right)+5^{100}\)
\(B=6+6\cdot5^2+...+6\cdot5^{98}+5^{100}\)
\(B=6\left(1+5^2+...+5^{98}\right)+5^{100}\)
a ⋮ c; b không chia hết cho c => a + b không chia hết cho c
ND
0
Ta có: 31+32+33+…+399+3100
=(31+32)+(33+34)+…+(399+3100)
=3.(1+3)+33.(1+3)+…+399.(1+3)
=3.4+33.4+…+399.4
=(3+33+…+399).4 chia hết cho 4
=>31+32+33+…+399+3100 chia hết cho 4
Đặt \(A=3+3^2+3^3+...+3^{99}+3^{100}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\)
\(=3\left(1+3\right)+3^{ 3}\left(1+3\right)+...+3^{99}\left(1+3\right)\)
\(=\left(1+3\right)\left(3+3^3+...+3^{99}\right)\)
\(=4\left(3+3^3+...+3^{99}\right)\)
Vì 4 chia hết cho 4 nên \(4\left(3+3^3+...+3^{99}\right)\)
Vậy A chia hết cho 4