C/m
√13 +23 = 1+2
√13 + 23 + 33 = 1+2+3
√13 +23 +33 +43 = 1+2+3+4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
13 + 23 = 1 + 8 = 9 = 32 (là một số chính phương)
13 + 23 + 33 = 1 + 8 + 27 = 36 = 62 (là một số chính phương)
13 + 23 + 33 + 43 = 1 + 8 + 27 + 64 = 100 = 102 (là số cp)
13 + 23 + 33 + 43 + 53 = 1 + 8 + 27 + 64 + 125 = 225 = (15)2 là số cp
Bài 2:
1262 + 1 = \(\overline{..6}\) + 1 = \(\overline{...7}\) (không phải số chính phương)
100! + 8 = \(\overline{...0}\) + 8 = \(\overline{...8}\) (không phải là số chính phương)
1012 - 3 \(\overline{..01}\) - 3 = \(\overline{...8}\) (không phải là số chính phương)
107 + 7 = \(\overline{..0}\) + 7 = \(\overline{..7}\) (không phải là số chính phương)
11 + 112 + 113 = \(\overline{..1}\)+ \(\overline{..1}\)+ \(\overline{..1}\) = \(\overline{...3}\) (không phải số chính phương)
a, 1 + 2 + 3 + 4 3 = 100; 1 3 + 2 3 + 3 3 + 4 3 = 100 nên 1 + 2 + 3 + 4 3 = 1 3 + 2 3 + 3 3 + 4 3
Vậy 1 + 2 + 3 + 4 3 = 1 3 + 2 3 + 3 3 + 4 3
b, 16.18.20.22 = (19 – 3)(19 – 1)(19 + 1)(19 + 3)
= (19 – 3)(19+3)(19 – 1)(19 + 1)
= ( 19 2 – 9)( 19 2 – 1)
= 19 4 - 9 . 19 2 - 19 2 + 9
= 19 4 - 10 . 19 2 + 9 < 19 4
Vậy 16.18.20.22 < 19 4
mik làm 1 câu thôi các cau khác 1 chang lun chỉ khác số
A = 1 + (-2) + 3 + (-4) + 5 +(-6) + ... + 99 + (-100)
A=(1+(-2))+(3+(-4))+.....+(99+(-100))
A=(-1)+(-1)+......+(-1) CÓ 50 SỐ
A= -50
\(A=\frac{7}{3\times13}+\frac{7}{13\times23}+...+\frac{7}{53\times63}\)
\(A=\frac{7}{10}.\left[\left(\frac{1}{3}-\frac{1}{13}\right)+\left(\frac{1}{13}-\frac{1}{23}\right)+....+\left(\frac{1}{53}-\frac{1}{63}\right)\right]\)
\(A=\frac{7}{10}.\left(\frac{1}{3}-\frac{1}{13}+\frac{1}{13}-\frac{1}{23}+....+\frac{1}{53}-\frac{1}{63}\right)\)
\(A=\frac{7}{10}.\left(\frac{1}{3}-\frac{1}{63}\right)\)
\(A=\frac{7}{10}.\frac{20}{63}\)
\(A=\frac{2}{9}\)
A=7*(1/3*13+1/13*23+1/23*33+1/33*43+1/43*53+1/53*63)
A=7/10(1/3-1/13+1/13-1/23+1/23-1/33+1/33-1/43+1/43-1/53+1/53-1/63)
A=7/10*(1/3-1/63)
A=7/10*20/63
A=2/9
a: \(12+2^2+3^2+4^2+5^2\)
\(=12+4+9+16+25\)
\(=16+50=66\)
\(\left(1+2+3+4+5\right)^2=15^2=225\)
=>\(12+2^2+3^2+4^2+5^2< \left(1+2+3+4+5\right)^2\)
b: \(1^3+2^3+3^3+4^3=\left(1+2+3+4\right)^2< \left(1+2+3+4\right)^3\)
c: \(5^{202}=5^2\cdot5^{200}=25\cdot5^{200}>16\cdot5^{200}\)
d: \(18\cdot4^{500}=18\cdot2^{1000}\)
\(2^{1004}=2^4\cdot2^{1000}=16\cdot2^{1000}\)
=>\(18\cdot4^{500}>2^{1004}\)
e: \(2022\cdot2023^{2024}+2023^{2024}=2023^{2024}\left(2022+1\right)\)
\(=2023^{2025}\)
chứng minh \(1^3+2^3+...+n^3=\left(1+2+...+n\right)^2\)
Chứng minh cái tổng quát:
\(1^3+2^3+3^3+...+n^3=\left(1+2+3+...+n\right)^2\)
Ta dễ thấy:
\(n^3=\dfrac{n^2\left(n+1\right)^2}{4}-\dfrac{n^2\left(n-1\right)^2}{4}=\left(1+2+...+n\right)^2-\left(1+2+...+\left(n-1\right)\right)^2\)
Từ đó ta có:
\(\left\{{}\begin{matrix}1^3=1^2-0^2\\2^3=\left(1+2\right)^2-1^2\\.........................\\n^3=\left(1+2+...+n\right)^2-\left(1+2+....+\left(n-1\right)\right)^2\end{matrix}\right.\)
Cộng tất cả vế theo vế ta được
\(1^3+2^3+...+n^3=\left(1+2+...+n\right)^2\)