Chứng minh rằng các biểu thức sau luôn nhận giá trị âm với mọi biến:
a, -9x2+12x-17
b, -11-(x-1)(x+2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-(x2-8x+16)-(y2-4y+4)= -(x-4)2-(y-2)2
Ta có : -(x-4)2<= 0
suy ra: -(x-4)2-(y-2)2<=0 (dpcm)
a. Đề sai, với \(x=0\Rightarrow A=4>0\)
b. Đề sai, với \(x=0\Rightarrow B=12>0\)
Ta có \(Q=x^2+y^2+36-2xy-12x+12y+5y^2-10y+5+1976\)
\(=\left(x-y-6\right)^2+5\left(y-1\right)^2+1976\ge0\)
=>Q luôn nhận giá trị dương với mọi x,y (ĐPCM)
^_^
\(Q=x^2+6y^2-2xy-12x+2y+2017\)
\(Q=\left(x^2-2xy+y^2\right)-2\left(x-y\right)6+36+5y^2-10x+5+1976\)
\(Q=\left(x-y\right)^2-12\left(x-y\right)+64+5\left(y^2-2y+1\right)+1976\)
\(Q=\left(x-y-6\right)^2+5\left(y-1\right)^2+1976\)
Mà, \(\left(x-y-6\right)^2,5\left(y-1\right)^2\ge0\)
\(\Rightarrow Q>0\)
a, Với x khác 1
\(A=\dfrac{x^2+x+1-3x^2+2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1-x}{\left(x-1\right)\left(x^2+x+1\right)}=-\dfrac{1}{x^2+x+1}\)
b, Ta có \(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\Rightarrow\dfrac{-1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}< 0\)
Vậy với x khác 1 thì bth A luôn nhận gtri âm
bài 1 : a. x^3 +27 -54-x^3 =-27
b. 8x^3 +y^3 -8x^3 +y^3 =2y^3
c. (2x-1+2x+2)(2x-1-2x-2)=(4x+1).(-3)=-12x-3
d. a^3 +b^3 +3ab(a+b) -3ab(a+b)=a^3+b^3
Bài 1:
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=1\\2a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-2\end{matrix}\right.\)
a, -9x2+12x-17
=-(9x2-12x+17)
=-[(3x)2-2.3x.2+22+13]
=-[(3x-2)2+13]
=-(3x-2)2-13
mà (3x-2)2\(\ge\)0 \(\forall\)x
=> -(3x-2)2\(\le\)0\(\forall\)x
=>-(3x-2)2-13<0\(\forall\)x
=> -9x2+12x-17<0\(\forall\)x
Vậy -9x2+12x-17 luôn nhận giá trị âm với mọi x
b,-11-(x-1)(x+2)
=-11-x2-x+2
=-x2-x-9
=-(x2+x+9)
=-[x2+2x.\(\dfrac{1}{2}\)+\(\left(\dfrac{1}{2}\right)^2\)+\(\dfrac{35}{4}\)]
=-[(x+\(\dfrac{1}{2}\))2+\(\dfrac{35}{4}\)]
=-(x+\(\dfrac{1}{2}\))2-\(\dfrac{35}{4}\)
mà (x+\(\dfrac{1}{2}\))2\(\ge\)0
=>-(x+\(\dfrac{1}{2}\))2\(\le0\)
=>-(x+\(\dfrac{1}{2}\))2-\(\dfrac{35}{4}\)<0
=>-11-(x-1)(x+2)<0\(\forall\)x
Vậy -11-(x-1)(x+2) luôn nhận giá trị âm với mọi x