K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2018

\(x-x^2+\dfrac{1}{4}\)

\(=-\left(x^2-x-\dfrac{1}{4}\right)\)

\(=-\left[\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{1}{4}-\dfrac{1}{4}\right]\)

\(=-\left[\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{2}\right]\)

= \(-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{2}\)

Ta có :

\(\left(x-\dfrac{1}{2}\right)^2\ge0\Rightarrow-\left(x-\dfrac{1}{2}\right)^2\le0\)

\(\Rightarrow-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{2}\)\(\dfrac{1}{2}< 0\)

2 tháng 7 2018

Đề là như này đúng ko bạn \(x-x^2-\frac{1}{4}\ge0\)

\(\Leftrightarrow\)\(-\left(x^2-x+\frac{1}{4}\right)\le0\)

\(\Leftrightarrow\)\(-\left(x-\frac{1}{2}\right)^2\le0\)

\(\Leftrightarrow\)\(\left(x-\frac{1}{2}\right)^2\ge0\) ( luôn đúng ) 

Vậy \(x-x^2-\frac{1}{4}\ge0\)

Chúc bạn học tốt ~ 

19 tháng 12 2022

a: =>(x-1)(x-2)<=0

=>1<=x<=2

b: =>(x^2-1)(x^2-2)<=0

=>1<=x^2<=2

=>\(\left[{}\begin{matrix}1< =x< =\sqrt{2}\\-1>=x>=-\sqrt{2}\end{matrix}\right.\)

21 tháng 7 2018

Giúp mình với nhé

13 tháng 10 2018

2) Mình nghĩ nên nhỏ hơn 3 thì dễ tính hơn... @@
Ta có :

\(\dfrac{x}{x+y+z}< \dfrac{x}{x+y}< \dfrac{x}{x}\\ \dfrac{y}{x+y+z}< \dfrac{y}{y+z}< \dfrac{y}{y}\\ \dfrac{z}{x+y+z}< \dfrac{z}{z+x}< \dfrac{z}{z}\)

\(\Rightarrow\dfrac{x}{x+y+z}+\dfrac{y}{x+y+z}+\dfrac{z}{x+y+z}< \dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}< \dfrac{x}{x}+\dfrac{y}{y}+\dfrac{z}{z}\\ \Rightarrow\dfrac{x+y+z}{x+y+z}< \dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}< 1+1+1\\ \Rightarrow1< \dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}< 3\)

2 tháng 3 2021

Áp dụng BĐT Cosi:

\(\dfrac{x^2}{1+16x^4}+\dfrac{y^2}{1+16y^4}\le\dfrac{x^2}{8x^2}+\dfrac{y^2}{8y^2}=\dfrac{1}{4}\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=\pm\dfrac{1}{2}\\y=\pm\dfrac{1}{2}\end{matrix}\right.\)

7 tháng 8 2021

a/ ĐK: $x\ne -5$

$\dfrac{6x^2+30x}{4}=\dfrac{6x(x+5)}{4}=\dfrac{3x(x+5)}{2}$ 

Đề này sai

b/ ĐK: $x\ne \pm 1$

$\dfrac{(x+2)(x+1)}{x^2-1}\\=\dfrac{(x+2)(x+1)}{(x-1)(x+1)}\\=\dfrac{x+2}{x-1}$

$\to$ ĐPCM

Câu a sai đề nhé.

15 tháng 9 2021

a) \(x^2+\left(y-\dfrac{1}{10}\right)^4=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y-\dfrac{1}{10}=0\end{matrix}\right.\)( do \(x^2\ge0,\left(y-\dfrac{1}{10}\right)^4\ge0\))

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\)

b) \(\left(\dfrac{1}{2}.x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\le0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x-5=0\\y^2-\dfrac{1}{4}=0\end{matrix}\right.\)( do \(\left(\dfrac{1}{2}x-5\right)^{20}\ge0,\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\))

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x=5\\y^2=\dfrac{1}{4}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=\pm\dfrac{1}{2}\end{matrix}\right.\)

15 tháng 9 2021

\(a,\Leftrightarrow\left\{{}\begin{matrix}x=0\\y-\dfrac{1}{10}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\\ b,\left\{{}\begin{matrix}\left(\dfrac{1}{2}x-5\right)^{20}\ge0\\\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\end{matrix}\right.\Leftrightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\)

Mà \(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\le0\)

\(\Leftrightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}=0\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x=5\\y^2=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=\pm\dfrac{1}{2}\end{matrix}\right.\)

16 tháng 11 2021

a: \(K=\dfrac{3x+3-4x-2-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{-x^2+x}{\left(x-1\right)\left(x+1\right)}=\dfrac{-x}{x+1}\)