K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2016

B. \(2-\frac{13}{3}< x< 1-2,4\)

\(-\frac{7}{3}< x< -\frac{7}{5}\)

\(\Rightarrow x=-\frac{7}{4}\)

C. 13x + 350 = 1000

13x = 650

x = 50 

D. \(\frac{4}{7}x-\frac{5}{8}=\frac{17}{24}\)

\(\frac{4x}{7}=\frac{4}{3}\)

\(\Rightarrow12x=28\)

\(\Rightarrow x=\frac{7}{3}\)

E. \(\frac{3}{7}x=5\)

\(x=5:\frac{3}{7}=\frac{5.7}{3}=\frac{35}{3}\)

Vì \(x\in Z\Rightarrow x\in O\)

G. 10 

11 tháng 9 2016

bn đưa ra câu hỏi thế này

mik đọc mõi mắt lw

đọc không nổi

3 tháng 5 2019

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

4 tháng 5 2019

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

15 tháng 9 2015

bn quy đồng ra một mẫu chung là tìm đc 

19 tháng 3 2016

\(\frac{n}{n-3}\) có giá trị nguyên thì n chia hết cho n - 3

=> n - 3 + 3 chia hết cho n - 3

=> 3 chia hết cho n - 3

=> n - 3 \(\in\) Ư(3) = {-3; -1; 1; 3}

=> n \(\in\) {0; 2; 4; 6}

Như vậy có 4 giá trị n nguyên thỏa mãn.

5 tháng 3 2017

n có 4 giá trị đó bạn !

2 tháng 1 2015

-17;-16;-15;-14;-13;-12;.....;0;1

Vì                 -3<a/6<1/3

tương đương   -18/6<a/6<2/6

suy ra    -18<a<2

27 tháng 11 2021

Answer:

a. \(-5< x< 5\)

\(\Rightarrow x\in\left\{\pm4;\pm3;\pm2;\pm1;0\right\}\)

Tổng các số nguyên x thoả mãn:

\((-4) + (-3) + (-2) + (-1) + 0 + 1 + 2 + 3 + 4\)

\(= (4 - 4) + (3 - 3) + (2 - 2) + (1 - 1) + 0\)

\(=0\)