K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: vecto DC=vecto AB

vecto OB=vecto DO

b: \(\left|\overrightarrow{OD}\right|=\left|\overrightarrow{OB}\right|\)

NV
12 tháng 9 2021

Bằng \(\overrightarrow{AB}\) là \(\overrightarrow{DC}\)

Bằng \(\overrightarrow{OB}\) là \(\overrightarrow{DO}\)

Có độ dài bằng OB là \(\overrightarrow{OB};\overrightarrow{BO};\overrightarrow{OD};\overrightarrow{DO}\)

12 tháng 9 2021

a) Bằng vectơ AB :
\(\overrightarrow{DC}\)
Bằng vectơ OB :
\(\overrightarrow{DO}\)
b)Có độ dài bằng OB :
\(\overrightarrow{OD}, \overrightarrow{DO}, \overrightarrow{BO}\)
 

CH 1.Trong không gian Oxyz ; Cho 3 điểm: A(-1; 1; 4) , B(1;- 1; 5) và C(1; 0; 3), toạ độ điểm D để ABCD là một hình bình hành là: A. D(-1; 2; 2) C. D(-1;-2 ; 2) D. D(1; -2; -2)CH 2.Trong không gian Oxyz cho 2 điểm A (1;–2;2) và B (– 2:0;1). Toạ độ điềm C nằm trên trục Oz để A ABC cân tại C là : A. C(0;0;2) C. C(0;–1;0) B. D(1; 2; -2) В. С(0,:0,-2) D. C( ;0;0)CH 3. Trong không gian Oxyz cho 2 vectơ a =(1; 2; 2) và (1; 2; -2); khi đó : ¿(i+6) có giá trị...
Đọc tiếp

CH 1.Trong không gian Oxyz ; Cho 3 điểm: A(-1; 1; 4) , B(1;- 1; 5) và C(1; 0; 3), toạ độ điểm D để ABCD là một hình bình hành là: A. D(-1; 2; 2) C. D(-1;-2 ; 2) D. D(1; -2; -2)

CH 2.Trong không gian Oxyz cho 2 điểm A (1;–2;2) và B (– 2:0;1). Toạ độ điềm C nằm trên trục Oz để A ABC cân tại C là : A. C(0;0;2) C. C(0;–1;0) B. D(1; 2; -2) В. С(0,:0,-2) D. C( ;0;0)

CH 3. Trong không gian Oxyz cho 2 vectơ a =(1; 2; 2) và (1; 2; -2); khi đó : ¿(i+6) có giá trị bằng : С. 4 A. 10 В. 18 D. 8

CH 4.Trong không gian Oxyz cho 2 vecto a= (3; 1; 2) và b= (2; 0; -1); khi đó vectơ 2a-b có độ dài bằng : А. 3/5 В. 29 С. M D. S/5

CH 5. Cho hình bình hành ABCD với A (-1;0;2), B(3;4;0) D (5;2;6). Tìm khẳng định sai. A. Tâm của hình bình hành có tọa độ là (4;3;3) B. Vecto AB có tọa độ là (4;-4;-2) C. Tọa độ của điểm C là (9;6;4) D. Trọng tâm tam giác ABD có tọa độ là (3;2;2)

0
Câu 8: Cho hình bình hành ABCD. Gọi M, N lần lượt là trung điểm của AD và BC, có bao nhiêu vectơ bằng với DM từ các điểm đã cho? A. 3. B. 4. C. 5. D. Câu 9: Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chọn khẳng định đúng trong các khẳng định sau.A. AD BC  . B. MQ PN  . C. MN QP  . D. AB DC  .Câu 10: Cho tam giác ABC với trực tâm H, D là điểm đối xứng với B qua tâm O...
Đọc tiếp

Câu 8: Cho hình bình hành ABCD. Gọi M, N lần lượt là trung điểm của AD và BC, có bao nhiêu vectơ bằng với DM từ các điểm đã cho? A. 3. B. 4. C. 5. D. Câu 9: Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chọn khẳng định đúng trong các khẳng định sau.

A. AD BC  . B. MQ PN  . C. MN QP  . D. AB DC  .

Câu 10: Cho tam giác ABC với trực tâm H, D là điểm đối xứng với B qua tâm O của đường tròn ngoại tiếp tam giác ABC. Khẳng định nào sau đây là đúng

A. HA CD  và AD CH  .

B. HA CD  và DA HC  .

C. HA CD  và AD HC  .

D. HA CD  và AD HC  và OB OD  .

Câu 1: Cho ABCD là hình vuông cạnh bằng 1. Khi đó độ dài của AC bằng

A. 1. B. 2. C. 2. D. 3.

Câu 2: Cho tam giác ABC vuông tại C có cạnh AC cm BC cm   4 , 3 . Độ dài của vectơ AB là

A. 7 . cm B. 6 . cm C. 5 . cm D. 4 . cm

Câu 3: Cho hình vuông ABCD tâm O, cạnh 2a. Độ dài vectơ DO bằng

A. 2 2. a B. 2 . 2 a C. a 2. D. 2 2. a

Câu 4: Cho đoạn thẳng AB cm 10 , điểm C thỏa mãn AC CB  . Độ dài vectơ AC là

A. 10 . cm B. 5 . cm C. 20 . cm D. 15 . c

0
18 tháng 5 2017

A B C D O M N
a)
Các véc tơ cùng phương với \(\overrightarrow{AB}\) là:
\(\overrightarrow{MO};\overrightarrow{OM};\overrightarrow{MN};\overrightarrow{NM};\overrightarrow{NO};\overrightarrow{ON};\overrightarrow{DC};\overrightarrow{CD};\overrightarrow{BA};\overrightarrow{AB}\).
Hai véc tơ cùng hướng với \(\overrightarrow{AB}\) là:
\(\overrightarrow{MO};\overrightarrow{ON}\).
Hai véc tơ ngược hướng với \(\overrightarrow{AB}\) là:
\(\overrightarrow{OM};\overrightarrow{ON}\).
b) Một véc tơ bằng véc tơ \(\overrightarrow{MO}\) là: \(\overrightarrow{ON}\).
Một véc tơ bằng véc tơ \(\overrightarrow{OB}\) là: \(\overrightarrow{DO}\).

23 tháng 11 2023

a: A(2;1); B(-2;5); C(-5;2)

Tọa độ vecto AB là:

\(\left\{{}\begin{matrix}x=-2-2=-4\\y=5-1=4\end{matrix}\right.\)

Vậy: \(\overrightarrow{AB}=\left(-4;4\right)\)

Tọa độ vecto AC là:

\(\left\{{}\begin{matrix}x=-5-2=-7\\y=2-1=1\end{matrix}\right.\)

Vậy: \(\overrightarrow{AC}=\left(-7;1\right)\)

Tọa độ vecto BC là:

\(\left\{{}\begin{matrix}x=-5-\left(-2\right)=-5+2=-3\\y=2-5=-3\end{matrix}\right.\)

Vậy: \(\overrightarrow{BC}=\left(-3;-3\right)\)

b: \(\overrightarrow{AB}=\left(-4;4\right);\overrightarrow{AC}=\left(-7;1\right);\overrightarrow{BC}=\left(-3;-3\right)\)

\(AB=\sqrt{\left(-4\right)^2+4^2}=4\sqrt{2}\)

\(AC=\sqrt{\left(-7\right)^2+1^2}=5\sqrt{2}\)

\(BC=\sqrt{\left(-3\right)^2+\left(-3\right)^2}=3\sqrt{2}\)

Chu vi ΔABC là:

\(5\sqrt{2}+4\sqrt{2}+3\sqrt{2}=12\sqrt{2}\)

Vì \(AC^2=BA^2+BC^2\)

nên ΔABC vuông tại B

c: tọa độ I là:

\(\left\{{}\begin{matrix}x=\dfrac{2+\left(-2\right)}{2}=0\\y=\dfrac{1+5}{2}=\dfrac{6}{2}=3\end{matrix}\right.\)

Vậy: I(0;3)

d: Tọa độ trọng tâm G của ΔABC là:

\(\left\{{}\begin{matrix}x=\dfrac{2+\left(-2\right)+\left(-5\right)}{3}=-\dfrac{5}{3}\\y=\dfrac{1+5+2}{3}=\dfrac{8}{3}\end{matrix}\right.\)

e: ABCD là hình bình hành

=>\(\overrightarrow{AB}=\overrightarrow{DC}\)

mà \(\overrightarrow{AB}=\left(-4;4\right);\overrightarrow{DC}=\left(-5-x;2-y\right)\)

nên \(\left\{{}\begin{matrix}-5-x=-4\\2-y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+5=4\\y=2-4=-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-1\\y=-2\end{matrix}\right.\)

Vậy: D(-1;-2)