K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2021

\(x^2+y^2\le x+y\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y-\dfrac{1}{2}\right)^2\le\dfrac{1}{2}\)

Áp dụng BĐT Bunhiacopski:

\(\left[1\cdot\left(x-\dfrac{1}{2}\right)^2+3\left(y-\dfrac{1}{2}\right)^2\right]\le10\left[\left(x-\dfrac{1}{2}\right)^2+\left(y-\dfrac{1}{2}\right)^2\right]\le5\)

\(\Leftrightarrow\left(x+3y-2\right)^2\le5\\ \Leftrightarrow x+3y-2\le\sqrt{5}\\ \Leftrightarrow x+3y\le2+\sqrt{5}\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5+\sqrt{5}}{10}\\y=\dfrac{5+3\sqrt{5}}{10}\end{matrix}\right.\)

 

19 tháng 9 2018

17 tháng 6 2017

27 tháng 5 2018

\(VT=6\left(x^2+y^2+z^2\right)+10\left(xy+yz+xz\right)+2\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)

\(=6\left(x+y+z\right)^2-2\left(xy+yz+xz\right)+2\frac{9}{2x+y+z+x+2y+z+x+y+2z}\)

\(\ge6\left(x+y+z\right)^2-2\frac{\left(x+y+z\right)^2}{3}+2\frac{9}{4\left(x+y+z\right)}\)

\(=\: 6\cdot\left(\frac{3}{4}\right)^2-2\cdot\frac{\left(\frac{3}{4}\right)^2}{3}+2\cdot\frac{9}{4\cdot\frac{3}{4}}=9\)

18 tháng 4 2021

Áp dụng BĐT cói cho 2 số ko âm ta có 

X^2+y^2 >= 2 .căn x^2 .y^2 = 2.xy= 2.6 =12 

Vậy P min =12 dấu = xảy ra khi x^2=y^2 <=> x=y 

( thông cảm mình gõ mũ ko đc ) 

NV
2 tháng 9 2021

\(P-\dfrac{5}{2}=x+2y-\dfrac{x^2+y^2}{2}=-\dfrac{1}{2}\left(x-1\right)^2-\dfrac{1}{2}\left(y-2\right)^2+\dfrac{5}{2}\le\dfrac{5}{2}\)

\(\Rightarrow P-\dfrac{5}{2}\le\dfrac{5}{2}\Rightarrow P\le5\)

\(P_{max}=5\) khi \(\left(x;y\right)=\left(1;2\right)\)

3 tháng 9 2021

Cảm ơn nhiều ạ !

30 tháng 4 2018

\(Q=\frac{3x+3y+2z}{\sqrt{6\left(x^2+5\right)}+\sqrt{6\left(y^2+5\right)}+\sqrt{z^2+5}}\)

\(\Leftrightarrow Q=\frac{3x+3y+2z}{\sqrt{6\left(x^2+xy+yz+zx\right)}+\sqrt{6\left(y^2+xy+yz+zx\right)}+\sqrt{z^2+xy+yz+zx}}\)

\(\Leftrightarrow Q=\frac{3x+3y+2z}{\sqrt{3\left(x+y\right).2\left(x+z\right)}+\sqrt{3\left(y+x\right).2\left(y+z\right)}+\sqrt{\left(z+x\right).\left(z+y\right)}}\)

\(\Rightarrow Q\ge\frac{3x+3y+2z}{\frac{3\left(x+y\right)+2\left(x+z\right)}{2}+\frac{3\left(y+x\right)+2\left(y+z\right)}{2}+\frac{\left(z+x\right)+\left(z+y\right)}{2}}\)

\(\Rightarrow Q\ge\frac{3x+3y+2z}{\frac{9x+9y+6z}{2}}=\frac{2}{3}\)

Dấu "=" xảy ra khi \(x=y=1\)và  \(z=2\)

22 tháng 5 2015

\(A=\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}+4xy=\left(\frac{1}{x}+\frac{1}{y}\right)^2+4xy\)

Do x,y\(\ge\)0

Ta có: \(\left(x-y\right)^2\ge0\Rightarrow x^2+y^2\ge2xy\Rightarrow x^2+y^2+2xy\ge4xy\)

\(\Rightarrow\left(x+y\right)^2\ge4xy\Rightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\Rightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)(*)

\(\left(x+y\right)^2\ge4xy\Rightarrow x+y\ge2\sqrt{xy}\)(**)

 Áp dụng bất đẳng thức (*) ta có: \(A=\left(\frac{1}{x}+\frac{1}{y}\right)^2+4xy\ge\left(\frac{4}{x+y}\right)^2+4xy=\frac{16}{\left(x+y\right)^2}+4xy\)

  Áp dụng bất đẳng thức (**) ta có:\(A\ge\frac{16}{\left(x+y\right)^2}+4xy\ge2\sqrt{\frac{16}{\left(x+y\right)^2}.4xy}=2.\frac{8\sqrt{xy}}{x+y}\ge16\sqrt{xy}\)(do x+y\(\le\)1)

                 mình đang còn suy nghĩ đây là bản nháp bạn xem thử