Cho tam giác MAB vuông tại M ( MA > MB), kẻ MH vuông góc với AB ( H thuộc AB ). Đường tròn tâm O đường kính MH cắt MA và MB lần lượt tại E và F ( E, F khác M)
1) Chứng minh tứ giác MEHF là hình chữ nhật.
2) Chứng minh tứ giác AEFB nội tiếp. ( chứng minh theo hai cách )
3) Đường thẳng EF cắt đường tròn (O') ngoại tiếp tam giác MAB tại P và Q ( P thuộc cung MB ). Chứng minh tam giác MPQ cân. ( chứng minh theo hai cách ).
4) Gọi I là giao điểm thứ hai của đường tròn (O) với đường tròn (O'). Đường thẳng EF cắt đường thẳng AB tại K. Chứng minh ba điểm M, I, K thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề bài : Cho tam giác MAB vuông tại H ( MB<MA), kẻ MH vuông góc với AB( H thuộc AB). Đường tròn tâm O đường kính MH cắt MA và MB lần lượt tại E và F( E,F khác M). a) Chứng minh tứ giác AEFB nội tiếp b) Đường thẳng EF cắt đường tròn tâm (I) ngoại tiếp tam giác MAB tại P và Q(P thuộc cung MB). Chứng minh tam giác MPQ cân c) Gọi D là giao điểm thứ 2 của (O) với (I). Đường thẳng EF cắt đường thẳng AB tại K. Chứng minh ba điểm M,D,K thẳng hàng
đúng hog
a) \(\Delta ABM\) nội tiếp đường tròn (O) có bán kính AB
=> \(\Delta ABM\) vuông tại M
b) Xét \(\Delta ABM\) vuông tại M, đường cao MH
=> \(AB^2+BH^2=25\)
=> AB =5
Ta có: MH .BC = MA.MB
=> MH =2,4
c) \(\Delta AMC\) vuông tại M, MN là tiếp tuyến
=> MN = NA= NC =AC/2
Xét \(\Delta OAN\) và \(\Delta OMN\) có:
OA =OH =R
ON chung
NA = NM
=> \(\Delta OAN=\Delta OMN\)
=> \(\widehat{OAN}=\widehat{OMN}=90^o\)
=> MN \(\perp\) OM
mà M thuộc (O)
=> MN là tiếp tuyến của (O)
d) Ta có: ON là tia phân giác \(\widehat{AOM}\)
OD là phân giác góc BOM
\(\widehat{AOM}=\widehat{BOM}\) (kề bù)
=> ON\(\perp\)OD
Xét \(\Delta NOD\) vuông tại O, đường cao OM
\(OM^2=NA.DB=>R^2=NA.DB\) (đpcm)
a) Xét (O) có
\(\widehat{ACB}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{ACB}=90^0\)
Xét tứ giác BHKC có
\(\widehat{BHK}+\widehat{BCK}=180^0\)
nên BHKC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
3) cách 2 - c/m cân theo góc.
ta sẽ chứng minh tam giác MPE đồng dạng tam giác MAP
Ta có: MEP^ = MEF^
MEF^ = MBA^ (tứ giác EFBA nt)
MBA^ = MPA^ (tứ giác MPBA nt)
=> MEP^ = MPA^
xét tam giác MPE và MAP có:
M^ chung (gt);
MEP^ = MPA^ (cmt)
=> tam giác MPE đồng dạng tam giác MAP (g.g)
=> MPE^ = MAP^
mà MPE^ = MPQ^
và MAP^ = MQP^ (cùng chắn cung MP của (O'))
=> MPQ^ = MQP^ => tam giác PMQ cân tại M