K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2021

\(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)

\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)

\(=x^5+y^5\)

12 tháng 10 2021

giúp mình vs mn ơi

 

12 tháng 10 2021

R đề bạn lấy ở đâu ra z?

26 tháng 5 2021

\(\left\{{}\begin{matrix}2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)=\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\left(1\right)\\16x^5-20x^3+5\sqrt{xy}=\sqrt{\dfrac{y+1}{2}}\left(2\right)\end{matrix}\right.\).

ĐKXĐ: \(xy>0;y\ge-\dfrac{1}{2}\).

Nhận thấy nếu x < 0 thì y < 0. Suy ra VT của (1) âm, còn VP của (1) dương (vô lí)

Do đó x > 0 nên y > 0.

Với a, b > 0 ta có bất đẳng thức \(\left(a+b\right)^4\le8\left(a^4+b^4\right)\).

Thật vậy, áp dụng bất đẳng thức Cauchy - Schwarz ta có:

\(\left(a+b\right)^4\le\left[2\left(a^2+b^2\right)\right]^2=4\left(a^2+b^2\right)^2\le8\left(a^4+b^4\right)\).

Dấu "=" xảy ra khi và chỉ khi a = b.

Áp dụng bất đẳng thức trên ta có:

\(\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^4\le8\left[8\left(x^4+y^4\right)+16x^2y^2\right]=64\left(x^2+y^2\right)^2\)

\(\Rightarrow\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\le8\left(x^2+y^2\right)\). (3)

Lại có \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2=4\left(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\right)\). (4) 

Áp dụng bất đẳng thức AM - GM ta có \(\dfrac{x^6}{y^4}+xy+xy+xy+xy\ge5x^2;\dfrac{y^6}{x^4}+xy+xy+xy+xy\ge5y^2;3\left(x^2+y^2\right)\ge6xy\).

Cộng vế với vế của các bđt trên lại rồi tút gọn ta được \(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\ge2\left(x^2+y^2\right)\). (5)

Từ (3), (4), (5) suy ra \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2\ge\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\Rightarrow2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)\ge\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\).

Do đó đẳng thức ở (1) xảy ra nên ta phải có x = y.

Thay x = y vào (2) ta được:

\(16x^5-20x^3+5x=\sqrt{\dfrac{x+1}{2}}\). (ĐK: \(x>0\))

PT này có một nghiệm là x = 1 mà sau đó không biết giải ntn :v

 

 

21 tháng 7 2018

\(\left(x+2\right)\left(x^2+2x-9\right)\)

\(=x^3+2x^2-9x+2x^2+4x-18\)

\(=x^3+4x^2-5x-18\)

\(\left(x^{2y}-6\right)\left(x^2-5\right)\)

\(=x^{4y}-5x^{2y}-6x^2+30\)

\(\left(x+y\right)\left(xy-4+y\right)\)

\(=x^2y-4x+xy+xy^2-4y+y^2\)

câu còn lại tương tự  nha

20 tháng 7 2018

a) 1/2(x3+8)=1/2(x+2)(x2-2x+4)

b) x4(x-y)+2x3(x-y)=x3(x+2)(x-y)

c) x2-(y2-6y+9)=x2-(y-3)2=(x-y+3)(x+y-3)

d) xy(x3+y3)=xy(x+y)(x2-xy+y2)

e)3x2(x2-25y2)=3x2(x-5y)(x+5y)

f) 4x4+4x2y2+y4-4x2y2= (2x2+y2)2-(2xy)2=(2x2-2xy+y2)(2x2+2xy+y2)

20 tháng 7 2018

a) \(\frac{1}{2}x^3+4=\frac{1}{2}\left(x^3+8\right)=\frac{1}{2}\left(x+2\right)\left(x^2-2x+4\right)\)

b) \(x^5-x^4y+2x^4-2x^3y=x^3\left(x^2-xy+2x-2y\right)=x^3\left[x\left(x-y\right)+2\left(x-y\right)\right]=x^2\left(x-y\right)\left(x+2\right)\)

c) \(x^2-y^2+6y-9=x^2-\left(y-3\right)^2=\left(x+y-3\right)\left(x-y+3\right)\)

d) \(x^4y+xy^4=xy\left(x^3+y^3\right)=xy\left(x+y\right)\left(x^2-xy+y^2\right)\)

e) \(3x^4-75x^2y^2=3x^2\left(x^2-25y^2\right)=3x^2\left(x+5y\right)\left(x-5y\right)\).

f) \(4x^4+y^4=\left(2x^2+y^2\right)^2-\left(2xy\right)^2=\left(2x^2+y^2+2xy\right)\left(2x^2-y^2-2xy\right)\)

19 tháng 6 2019

a) \(x+xy-y=8\)

\(\Leftrightarrow x.\left(1+y\right)-y=8\)

\(\Leftrightarrow x.\left(1+y\right)-y-1=8-1\)

\(\Leftrightarrow x.\left(1+y\right)-\left(1+y\right)=7\)

\(\Leftrightarrow\left(1+y\right).\left(x-1\right)=7\)

Lập bảng tìm tiếp

19 tháng 6 2019

b) Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(2y-6\right)^4\ge0\forall x\end{cases}}\)

\(\Rightarrow\left(x+2\right)^2+\left(2y-6\right)^4\ge0\forall x\)

Do đó \(\left(x+2\right)^2+\left(2y-6\right)^4=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(2y-6\right)^4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}}\)

Vậy ...

Bài làm

Ta có: P = x3 + x2y - 2x2 - xy - y2 + 3y + x + 2017

          P = x3 + x2y - 2x2 - xy - y2 + 2y + y + x + 2017

          P = ( x3 + x2y − 2x2 ) − ( xy + y2 − 2y ) + ( x + y − 2 ) + 2019

          P = x2( x + y − 2 ) − y( x + y − 2 ) + ( x + y − 2 ) + 2019

Mà x + y = 2 => x + y - 2 = 0

Thay x + y - 2 = 0 và đa thức P, ta được:

P = x. 0 - y . 0 + 0 + 2019

P = 0 - 0 + 0 + 2019

P = 2019

Vậy P = 2019 tại x + y = 2

# Học tốt #

30 tháng 10 2019

\(P=x^3+x^2y-2x^2-xy-y^2+3y+x+2017\)

\(P=\left(x^3+x^2y-2x^2\right)+\left(-xy-y^2+2y\right)+\left(x+y-2\right)+2019\)

\(P=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)+2019\)

\(P=\left(x^2-y+1\right)\left(x+y-2\right)+2019\)

\(P=0+2019=2019\)