Tìm x, biết:
a,\(\sqrt{x}\) =4
b, \(\left(x+1\right)^2=1\)
c,\(\sqrt{x+1}=5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: x>=0; x<>1
a: \(B=\dfrac{\sqrt{x}\left(x-1\right)^2}{\sqrt{x}+1}:\left(\left(x+\sqrt{x}+1+\sqrt{x}\right)\left(x-\sqrt{x}+1-\sqrt{x}\right)\right)\)
\(=\dfrac{\sqrt{x}\left(x-1\right)^2}{\sqrt{x}+1}:\left[\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)^2\right]\)
\(=\dfrac{\sqrt{x}\left(x-1\right)^2}{\left(x-1\right)^2\cdot\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
b: Khi x=4-2căn 3=(căn 3-1)^2 thì \(B=\dfrac{\sqrt{3}-1}{\sqrt{3}-1+1}=\dfrac{\sqrt{3}-1}{\sqrt{3}}=\dfrac{3-\sqrt{3}}{3}\)
c: B=2/3
=>căn x/căn x+1=2/3
=>căn x=2
=>x=4
d: \(B-1=\dfrac{\sqrt{x}-\sqrt{x}-1}{\sqrt{x}+1}=-\dfrac{1}{\sqrt{x}+1}< 0\)
=>B<1
e: B>1
=>-1/căn x+1>0
=>căn x+1<0(vô lý)
=>KO có x thỏa mãn
f: B nguyên khi căn x chia hết cho căn x+1
=>căn x+1-1 chia hết cho căn x+1
=>căn x+1=1 hoặc căn x+1=-1(loại)
=>căn x=0
=>x=0
Bài 3:
a) \(\sqrt{3x-2}=4\)
⇔\(\sqrt{3x-2}=\sqrt{4^2}\)
⇔\(3x-2=4^2=16\)
\(3x=16+2=18\)
\(x=18:3=6\)
Vậy \(x=6\)
b)\(\sqrt{4x^2+4x+1}-11=5\)
⇔\(\sqrt{\left(2x\right)^2+2\left(2x\right)\cdot1+1^2}-11=5\)
⇔\(\sqrt{\left(2x+1\right)^2}-11=5\)
TH1:
⇔\(\left(2x+1\right)-11=5\)
\(2x+1=5+11=16\)
\(2x=16-1=15\)
\(x=15:2=7,5\)
TH2:
⇔\(\left(2x+1\right)-11=-5\)
\(2x-1=-5+11=6\)
\(2x=6+1=7\)
\(x=7:2=3,5\)
Vậy \(x=\left\{7,5;3,5\right\}\)
(Câu này mình không chắc chắn lắm)
(Học sinh lớp 6 đang làm bài này)
Bài 4:
a: \(C=\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\)
\(=\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)+\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-\sqrt{x}+x+\sqrt{x}}{\sqrt{x}}=\dfrac{2x}{\sqrt{x}}=2\sqrt{x}\)
b: C-6<0
=>C<6
=>\(2\sqrt{x}< 6\)
=>\(\sqrt{x}< 3\)
=>0<=x<9
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0< x< 9\\x\ne1\end{matrix}\right.\)
a, \(\sqrt{\left(2x+3\right)^2}=x+1\)
\(\Leftrightarrow\left|2x+3\right|=x+1\)
TH1: \(\left\{{}\begin{matrix}2x+3=x+1\\2x+3\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x\ge-\dfrac{3}{2}\end{matrix}\right.\Rightarrow\) vô nghiệm.
Vậy phương trình vô nghiệm.
TH2: \(\left\{{}\begin{matrix}-2x-3=x+1\\2x+3< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{4}{3}\\x< -\dfrac{3}{2}\end{matrix}\right.\Rightarrow\) vô nghiệm.
b,
a, \(\sqrt{\left(2x-1\right)^2}=x+1\)
\(\Leftrightarrow\left|2x-1\right|=x+1\)
TH1: \(\left\{{}\begin{matrix}2x-1=x+1\\2x-1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x\ge\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow x=2\)
TH2: \(\left\{{}\begin{matrix}-2x+1=x+1\\2x-1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x< \dfrac{1}{2}\end{matrix}\right.\Leftrightarrow x=0\)
\(A=\dfrac{x+\sqrt{x}-x-2}{\sqrt{x}+1}:\dfrac{x-\sqrt{x}+\sqrt{x}-4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\\ A=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\cdot\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)
\(x=\dfrac{9-4\sqrt{5}-9-4\sqrt{5}}{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}:2\sqrt{5}=\dfrac{-8\sqrt{5}}{-2\sqrt{5}}=4\\ \Leftrightarrow\sqrt{x}=2\\ \Leftrightarrow A=\dfrac{2-1}{2+2}=\dfrac{1}{4}\)
a: \(A=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}=-2\sqrt{b}\)
b: \(B=\dfrac{2\sqrt{x}-x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)
\(=\dfrac{-2x+\sqrt{x}-1}{\sqrt{x}-1}\cdot\dfrac{1}{x-1}\)
c: \(C=\dfrac{x-9-x+3\sqrt{x}}{x-9}:\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+3}+\dfrac{x-9}{x+\sqrt{x}-6}\right)\)
\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}:\dfrac{9-x+x-4\sqrt{x}+4+x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{x-4\sqrt{x}+4}\)
\(=\dfrac{3}{\sqrt{x}-2}\)
\(1,\\ a,ĐK:\left\{{}\begin{matrix}x\ge0\\x+5\ge0\end{matrix}\right.\Leftrightarrow x\ge0\\ b,Sửa:B=\left(\sqrt{3}-1\right)^2+\dfrac{24-2\sqrt{3}}{\sqrt{2}-1}\\ B=4-2\sqrt{3}+\dfrac{2\sqrt{3}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}\\ B=4-2\sqrt{3}+2\sqrt{3}=4\\ 3,\\ =\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{1+\sqrt{x}}\right]\cdot\dfrac{\sqrt{x}-3+2-2\sqrt{x}}{\left(1-\sqrt{x}\right)\left(\sqrt{x}-3\right)}-2\\ =\left(1-\sqrt{x}\right)\cdot\dfrac{-\sqrt{x}-1}{\left(1-\sqrt{x}\right)\left(\sqrt{x}-3\right)}-2\\ =\dfrac{-\sqrt{x}-1}{\sqrt{x}-3}-2=\dfrac{-\sqrt{x}-1-2\sqrt{x}+6}{\sqrt{x}-3}=\dfrac{-3\sqrt{x}+5}{\sqrt{x}-3}\)
a) \(\sqrt{x}=4=>x=16\)
b) \(\left(x+1\right)^2=1=>x+1=\sqrt{1}=1\)
\(x+1=1=>x=0\)
c) \(\sqrt{x+1}=5=>x+1=25\)