Cho \(\Delta ABC\) có các đường phân giác \(\widehat{B}\) và \(\widehat{C}\) cắt nhau tại I. Qua I kẻ đường thẳng song song với BC cắt AB và AC lần lượt tại D và E. C/minh: Hình thang BCED có một cạnh đáy bằng tổng hai cạnh bên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\) Các hình thang \(BDEC;BDIC;BIEC\)
\(b,DE//BC.nên.\widehat{B_1}=\widehat{I_1}\left(so.le.trong\right)\)
Mà \(\widehat{B_1}=\widehat{B_2}\left(t/c.phân.giác\right)\) nên \(\widehat{B_2}=\widehat{I_1}\Rightarrow\Delta DIB\) cân tại D
\(\Rightarrow DI=DB\left(1\right)\)
\(DE//BC.nên.\widehat{C_1}=\widehat{I_2}\left(so.le.trong\right)\)
Mà \(\widehat{C_1}=\widehat{C_2}\left(t/c.phân.giác\right)\) nên \(\widehat{C_2}=\widehat{I_2}\Rightarrow\Delta IEC\) cân tại E
\(\Rightarrow EI=EC\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow DI+IE=BD+EC\\ \Rightarrow DE=BD+CE\left(Đpcm\right)\)
b: Xét ΔDBI có
\(\widehat{DBI}=\widehat{DIB}\)
nên ΔDBI cân tại D
Xét ΔEIC có \(\widehat{EIC}=\widehat{ECI}\)
nên ΔEIC cân tại E
Ta có: DE=DI+IE
nên DE=DB+EC
Vậy: BDEC là hình thang có một cạnh đáy bằng tổng hai cạnh bên
Đáp án cần chọn là: D
Xét tứ giác DECB có: DE // BC (gt) nên tứ giác DECB là hình thang.
Tương tự:
Tứ giác DICB có DI // BC (gt) nên tứ giác DICB là hình thang.
Tứ giác IECB có IE // CB (gt) nên tứ giác IECB là hình thang.
Đáp án cần chọn là: B
Vì DE // BC (gt) nên suy ra D I B ^ = I B C ^ (so le trong)
Mà D I B ^ = I B C ^ (gt) nên D I B ^ = D B I ^
Suy ra tam giác BDI cân đỉnh D.
Do đó DI = DB (1)
Ta có: IE // CB nên suy ra E I C ^ = B C I ^ (so le trong)
Mà E I C ^ = B C I ^ (gt) nên E C I ^ = E I C ^
Suy ra tam giác EIC cân đỉnh E
Do đó EI = EC (2)
Cộng (1) và (2) vế theo vế ta được: DI + EI = BD + CE
=> DE = BD + CE
Đáp án cần chọn là: D
Xét tứ giác DECB có: DE // BC (gt) nên tứ giác DECB là hình thang.
Tương tự:
Tứ giác DICB có DI // BC (gt) nên tứ giác DICB là hình thang.
Tứ giác IECB có IE // CB (gt) nên tứ giác IECB là hình thang.
Đáp án cần chọn là: B
Vì DE // BC (gt) nên suy ra D I B ^ = I B C ^ (so le trong)
Mà D B I ^ = I B C ^ (gt) nên D I B ^ = D B I ^
Suy ra tam giác BDI cân đỉnh D.
Do đó DI = DB (1)
Ta có: IE // CB nên suy ra E I C ^ = B C I ^ (so le trong)
Mà B C I ^ = E C I ^ (gt) nên E C I ^ = E I C ^
Suy ra tam giác EIC cân đỉnh E
Do đó EI = EC (2)
Cộng (1) và (2) vế theo vế ta được: DI + EI = BD + CE
=> DE = BD + CE
Xét ΔDIB có góc DIB=góc DBI
nên ΔDIB cân tại D
=>DI=DB
Xét ΔEIC có góc EIC=góc ECI
nên ΔEIC cân tại E
=>EI=EC
Ta có: DE=DI+IE
nên DE=DB+EC