Giả sử PT : \(x^2+ax+b+1=0\) có 2 nghiệm nguyên dương . Chứng minh : \(a^2+b^2\) là hợp số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi x1,x2 là hai nghiệm \(\Rightarrow x_1+x_2=-a\) và \(x_1x_2=b+1\)
Ta có : \(a^2+b^2=\left[-\left(x_1+x_2\right)\right]^2+\left(x_1x_2-1\right)^2\)
\(\Rightarrow a^2+b^2=\left(x_1^2+x_2^2+2x_1x_2\right)+\left(x_1^2x_2^2-2x_1x_2+1\right)\)
\(\Rightarrow a^2+b^2=x_1^2+x_2^2+x_1^2x_2^2+1=\left(x_1^2+1\right)\left(x_2^2+1\right)\)là hợp số
Do pt có 1 nghiệm là \(2-\sqrt{3}\)
\(\Rightarrow\left(2-\sqrt{3}\right)^2+a\left(2-\sqrt{3}\right)+b=0\)
\(\Leftrightarrow7-4\sqrt{3}+2a-a\sqrt{3}+b=0\)
\(\Leftrightarrow2a+b+7=\left(a+4\right)\sqrt{3}\)
Vế trái là số hữu tỉ, vế phải vô tỉ nên đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}a+4=0\\2a+b+7=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-4\\b=1\end{matrix}\right.\)
Ta có:
- \(x^2+y^2+x+y=4\)
- x(x+y+1)+y(y+1)=2
=>
- x^2+y^2+x+y=4
- x^2+y^2+x+y+xy=2
=>
- (x+y)^2+(x+y)-2xy=4
- xy=-2
=>
- (x+y)(x+y+1)=0
- xy=-2
=>1)
- x+y=0
- xy=-2
2)
- x+y=-1
- xy=-2
giải các hệ pt 1) và 2) ta được (x;y)=(\(\left(\sqrt{2};-\sqrt{2}\right),\left(-\sqrt{2};\sqrt{2}\right),\left(-2;1\right),\left(1;-2\right)\)
bạn nè,mặc dù mình ko biết làm nhưng bạn chỉ cần cố gắng là làm được
Lời giải:
Giả sử $x_1,x_2$ là hai nghiệm nguyên dương của phương trình đã cho.
Khi đó, áp dụng định lý Viete ta có: \(\left\{\begin{matrix} x_1+x_2=-a\\ x_1x_2=b+1\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} x_1+x_2=-a\\ x_1x_2-1=b\end{matrix}\right.\)
\(\Rightarrow a^2+b^2=(x_1+x_2)^2+(x_1x_2-1)^2\)
hay \(a^2+b^2=x_1^2+x_2^2+2x_1x_2+x_1^2x_2^2-2x_1x_2+1\)
\(=x_1^2+x_2^2+x_1^2x_2^2+1=(x_1^2+1)(x_2^2+1)\)
Vì \(x_1,x_2\in\mathbb{Z}^+\Rightarrow x_1^2+1,x_2^2+1\geq 2\)
Do đó: \(a^2+b^2=(x_1^2+1)(x_2^2+1)\) là hợp số.