Bài 1: Tính giá trị biểu thức:
A = x15 – 8x14 + 8x13 – 8x12 +….- 8x2 + 8x – 5 với x = 7.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`B = x^15 - 8x^14 + 8x^13 - 8x^122 + ... - 8x^2 + 8x - 5`
`B = x^15 - 7x^14 -x^14+7x^13+x^13-7x^12-...-x^2+7x+x-5`
`B = x^14(x-7) - x^14(x-7) +...+x^2(x-7)-x(x-7)+x-5`
`B = 7-5=2`
x=7 nên x+1=8
\(B=x^{15}-x^{14}\left(x+1\right)+x^{13}\left(x+1\right)-x^{12}\left(x+1\right)+...-x^2\left(x+1\right)+x\left(x+1\right)-5\)
\(=x^{15}-x^{15}-x^{14}+x^{14}-x^{13}+x^{13}-...-x^3-x^2+x^2+x+5\)
=x+5
=7+5
=12
a)
\(P=\left(x^{14}-9x^{13}\right)-\left(x^{13}-9x^{12}\right)+\left(x^{12}-9x^{11}\right)-...+\left(x^2-9x\right)-\left(x-9\right)+1\)
\(=x^{13}\left(x-9\right)-x^{12}\left(x-9\right)+x^{11}\left(x-9\right)+...+x\left(x-9\right)-\left(x-9\right)+1\)
\(P\left(9\right)=1\)
b)
\(Q=\left(x^{15}-7x^{14}\right)-\left(x^{14}-7x^{13}\right)+\left(x^{13}-7x^{12}\right)-...-\left(x^2-7x\right)+\left(x-7\right)+2\)
\(=x^{14}\left(x-7\right)-x^{13}\left(x-7\right)+x^{12}\left(x-7\right)-...-x\left(x-7\right)+\left(x-7\right)+2\)
\(Q\left(7\right)=2\)
ta có: 8=7+1=x+1
\(B=x^{15}-8x^{14}+8x^{13}-...-8x^2+8x-5\)
\(\Rightarrow B=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-...-\left(x+1\right)x^2+\left(x+1\right)x-5\)
\(\Rightarrow B=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-...-x^3-x^2+x^2+x-5\)
\(\Rightarrow B=x-5\)
\(\Rightarrow B=7-5\)
\(\Rightarrow B=2\)
B = x15 - 8x14 + 8x13 - 8x2 + ... - 8x2 + 8x - 5
B = x^15 - 7x^14 -x^14+7x^13+x^13-7x^12-...-x^2+7x+x-5
B = x^14(x-7) - x^14(x-7) +...+x^2(x-7)-x(x-7)+x-5
B = 7-5=2
Tham khảo cách này nhoá~
B = x15 - 8x14 + 8x13 - 8x2 + ... - 8x2 + 8x - 5
B = x^15 - 7x^14 -x^14+7x^13+x^13-7x^12-...-x^2+7x+x-5
B = x^14(x-7) - x^14(x-7) +...+x^2(x-7)-x(x-7)+x-5
B = 7-5=2
`B = x^15 - 7x^14 - x^14 + 7x^13 + x^13 - .... +7x + x - 7 + 2`
`<=> x^14(x-7) - x^13(x-7) + ... + x - 7 + 2`
`<=> (x^14-x^13 + ... + 1)(x-7) + 2`
Thay `x = 7 <=> (x^14 - x^13 + ... + 1) xx 0 + 2 = 2`.
Ta có : x = 7 ⇒ x + 1 = 8
Thay x + 1 = 8 vào A , ta được :
A = x15 - ( x + 1)x14 + ( x + 1)x13 - ( x + 1)x12 +....- ( x + 1)x2 + ( x + 1)x - 5
A = x15 - x15 - x14 + x14 + x13 - x13 - x12 +....- x3 - x2 + x2 + x - 5
A = x - 5 = 7 - 5 = 2