So sánh:
A= 2005^2-2004/2005^3+1 VÀ B = 2005^2+2006/2005^3-1
giải chi tiết nha.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=20052005+120052006+1<20052005+1+200420052006+1+2004=2005.(20052004+1)2005.(20052005+1)==20052004+120052005+1=B.�=20052005+120052006+1<20052005+1+200420052006+1+2004=2005.(20052004+1)2005.(20052005+1)==20052004+120052005+1=�.
Vậy A < B
A=20052005+120052006+1<20052005+1+200420052006+1+2004=2005.(20052004+1)2005.(20052005+1)==20052004+120052005+1=B.�=20052005+120052006+1<20052005+1+200420052006+1+2004=2005.(20052004+1)2005.(20052005+1)==20052004+120052005+1=�.
Vậy A < B
\(A=\frac{2005^{2005}+1}{2005^{2006}+1}\)
\(2005A=\frac{2005^{2006}+2005}{2005^{2006}+1}=\frac{2005^{2006}+1+2004}{2005^{2006}+1}=\frac{2005^{2006}+1}{2005^{2006}+1}+\frac{2004}{2005^{2006}+1}\)
\(B=\frac{2005^{2004}+1}{2005^{2005}+1}\)
\(2005B=\frac{2005^{2005}+2005}{2005^{2005}+1}=\frac{2005^{2005}+1+2004}{2005^{2005}+1}=\frac{2005^{2005}+1}{2005^{2005}+1}+\frac{2004}{2005^{2005}+1}\)
Vì \(\frac{2004}{2005^{2006}+1}<\frac{2004}{2005^{2005}+1}\)
Nên A<B
a) \(\frac{2004}{2005}=1-\frac{1}{2005}\);\(\frac{2005}{2006}=1-\frac{1}{2006}\)
Vì \(\frac{1}{2005}>\frac{1}{2006}\)=>\(1-\frac{1}{2005}< 1-\frac{1}{2006}\)=>\(\frac{2004}{2005}< \frac{2005}{2006}\)
\(10A=\frac{2005^{2006}+10}{2005^{2006}+1}\)
\(10B=\frac{2005^{2005}+10}{2005^{2005}+1}\)
Rồi bạn so sánh 10A và 10B là ra.
Ai thấy đúng thì ủng hộ nha !!!, sai thì góp ý cho mink nha
Ta có
A <\(\frac{2005^{2005}+2005}{2005^{2006}+2005}=\frac{2005\left(2005^{2004}+1\right)}{2005\left(2005^{2005}+1\right)}\)=\(\frac{2005^{2004}+1}{2005^{2005}+1}\)
\(\RightarrowĐPCM\)
Giải:
\(A=\dfrac{2005^2-2004}{2005^3+1}\)
\(\Leftrightarrow A=\dfrac{2005^2-2005+1}{\left(2005+1\right)\left(2005^2-2005+1\right)}\)
\(\Leftrightarrow A=\dfrac{1}{2005+1}\left(1\right)\)
\(B=\dfrac{2005^2+2006}{2005^3-1}\)
\(\Leftrightarrow B=\dfrac{2005^2+2005+1}{\left(2005-1\right)\left(2005^2+2005+1\right)}\)
\(\Leftrightarrow B=\dfrac{1}{2005-1}\left(2\right)\)
Ta có:
\(\left(1\right)< \left(2\right)\)
\(\Leftrightarrow A< B\)
Vậy ...