Bài 1: cho a + b = 1. Tìm GTNN A = a3+b3+ab
Bài 2: Tìm GTNN B = 2/6x-5-9x2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mk ms tìm được GTNN thôi!
Ta có: A = a3 + b3 = (a + b)(a2 + b2 - ab) = (a + b)(1 - ab)
Áp dụng BĐT Cô-si cho 2 số ko âm a2 và b2 ta có:
a2 + b2 \(\ge\) 2ab
\(\Leftrightarrow\) 1 \(\ge\) 2ab
\(\Leftrightarrow\) 1 - 2ab \(\ge\) 0
\(\Leftrightarrow\) 1 - ab \(\ge\) ab
\(\Rightarrow\) A \(\ge\) ab(a + b)
Dấu "=" xảy ra khi và chỉ khi a = b = \(\sqrt{0,5}\)
\(\Rightarrow\) A \(\ge\) 0,5 . 2\(\sqrt{0,5}\) = \(\sqrt{0,5}\)
Vậy ...
Chúc bn học tốt!
\(a^2+b^2=1\Rightarrow\left\{{}\begin{matrix}0\le a\le1\\0\le b\le1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^3\le a^2\\b^3\le b^2\end{matrix}\right.\)
\(\Rightarrow a^3+b^3\le a^2+b^2=1\)
\(A_{max}=1\) khi \(\left(a;b\right)=\left(0;1\right);\left(1;0\right)\)
\(a^3+a^3+\left(\dfrac{1}{\sqrt{2}}\right)^3\ge\dfrac{3}{\sqrt{2}}a^2\)
\(b^3+b^3+\left(\dfrac{1}{\sqrt{2}}\right)^3\ge\dfrac{3}{\sqrt{2}}b^2\)
Cộng vế:
\(2\left(a^3+b^3\right)+\dfrac{\sqrt{2}}{2}\ge\dfrac{3}{\sqrt{2}}\left(a^2+b^2\right)=\dfrac{3\sqrt{2}}{2}\)
\(\Rightarrow a^3+b^3\ge\dfrac{\sqrt{2}}{2}\)
\(A_{min}=\dfrac{\sqrt{2}}{2}\) khi \(a=b=\dfrac{\sqrt{2}}{2}\)
Đặt \(P=\dfrac{a^3}{a^2+b^2+ab}+\dfrac{b^3}{b^2+c^2+bc}+\dfrac{c^3}{c^2+a^2+ca}\)
Ta có: \(\dfrac{a^3}{a^2+b^2+ab}=a-\dfrac{ab\left(a+b\right)}{a^2+b^2+ab}\ge a-\dfrac{ab\left(a+b\right)}{3\sqrt[3]{a^3b^3}}=a-\dfrac{a+b}{3}=\dfrac{2a-b}{3}\)
Tương tự: \(\dfrac{b^3}{b^2+c^2+bc}\ge\dfrac{2b-c}{3}\) ; \(\dfrac{c^3}{c^2+a^2+ca}\ge\dfrac{2c-a}{3}\)
Cộng vế:
\(P\ge\dfrac{a+b+c}{3}=673\)
Dấu "=" xảy ra khi \(a=b=c=673\)
a) (x-2)^3-x(x+1)(x-1)+6x(x-3)=0
\(x^3-6x^2+12x-8-x\left(x^2-1\right)+6x\left(x-3\right)=0\)
\(x^3-6x^2+12x-8-x^3+x+6x^2-18x=0\)
\(-5x-8=0\)
\(x=-\frac{8}{5}\)
Mai mik làm mấy bài kia sau
Lời giải:
Áp dụng BĐT AM-GM:
$1=a+b\geq 2\sqrt{ab}\Rightarrow ab\leq \frac{1}{4}$
\(M=\frac{a^2+b^2}{ab}+ab=\frac{(a+b)^2-2ab}{ab}+ab=\frac{1}{ab}+ab-2\)
Tiếp tục áp dụng BĐT AM-GM:
\(ab+\frac{1}{16ab}\geq \frac{1}{2}\)
\(\frac{15}{16ab}\geq \frac{15}{16.\frac{1}{4}}=\frac{15}{4}\)
$\Rightarrow ab+\frac{1}{ab}\geq \frac{17}{4}$
$\Rightarrow M\geq \frac{9}{4}$
Vậy $M_{\min}=\frac{9}{4}$ khi $a=b=\frac{1}{2}$
bài 1:
a) (x+1)^2-(x-1)^2-3(x+1)(x-1)
=(x+1+x-1)(x+1-x+1)-3x^2-3
=2x^2-3x^2-3
=-x^2-3
B1
Ta có
\(A=\frac{a^2}{24}+\frac{9}{a}+\frac{9}{a}+\frac{23a^2}{24}\ge3\sqrt[3]{\frac{a^2}{24}.\frac{9}{a}.\frac{9}{a}+\frac{23a^2}{24}}\ge\frac{9}{2}+\frac{23.36}{24}\ge39\)
Dấu "=" xảy ra <=> a=6
Vậy Min A = 39 <=> a=6
\(A=a^2+\frac{18}{a}=a^2+\frac{216}{a}+\frac{216}{a}-\frac{414}{a}\ge3\sqrt[3]{a^2.\frac{216}{a}.\frac{216}{a}}-69=39\)
Đẳng thức xảy ra khi a = 6
1,Ta có: \(A=a^3+b^3+ab\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+ab\)
\(=a^2-ab+b^2+ab\)
\(=a^2+b^2\)
\(=\left(a+b\right)^2-2ab\)
\(=1-2ab\)
Vì \(a+b=1\Rightarrow a=1-b\)
Khi đó \(A=1-2\left(1-b\right)b\)
\(=1-2b-2b^2\)
\(=2\left(b^2-b+\dfrac{1}{4}\right)+\dfrac{1}{2}\)
\(=2\left(b-\dfrac{1}{2}\right)^2+\dfrac{1}{2}\)
Vì \(2\left(b-\dfrac{1}{2}\right)^2\ge0\Rightarrow A=2\left(b-\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\)
Dấu "=" xảy ra khi \(\left(b-\dfrac{1}{2}\right)^2=0\Leftrightarrow b=\dfrac{1}{2}\Leftrightarrow a=\dfrac{1}{2}\)
Vậy \(MinA=\dfrac{1}{2}\Leftrightarrow a=b=\dfrac{1}{2}\)
2, \(B=\dfrac{2}{6x-5-9x^2}=\dfrac{-2}{9x^2-6x+5}=\dfrac{-2}{\left(3x-1\right)^2+4}\)
Vì \(\left(3x-1\right)^2\ge0\Rightarrow\left(3x-1\right)^2+4\ge4\)
\(\Rightarrow\dfrac{1}{\left(3x-1\right)^2+4}\le\dfrac{1}{4}\)
\(\Rightarrow B=\dfrac{-2}{\left(3x-1\right)^2+4}\ge\dfrac{-2}{4}=\dfrac{-1}{2}\)
Dấu "=" xảy ra khi \(3x-1=0\Leftrightarrow x=\dfrac{1}{3}\)
Vậy \(MinB=\dfrac{-1}{2}\Leftrightarrow x=\dfrac{1}{3}\)
Cách khác :
Bài 1. Ta có : \(a^3+b^3+ab=\left(a+b\right)\left(a^2-ab+b^2\right)+ab=a^2+b^2\)
Áp dụng BĐT Bunhiacopxki , ta có :
\(\left(a^2+b^2\right)\left(1^2+1^2\right)\) ≥ \(\left(a+b\right)^2\)
⇔ \(a^2+b^2\) ≥ \(\dfrac{\left(a+b\right)^2}{2}=\dfrac{1}{2}\)
⇔ GTNN của \(a^2+b^2\) là \(\dfrac{1}{2}\) . Đẳng thức xảy ra khi : \(x=y=\dfrac{1}{2}\)
Bài 2. \(B=\dfrac{2}{6x-5-9x^2}=\dfrac{-2}{9x^2-6x+5}\)
\(B=\dfrac{-4}{2\left(9x^2-6x+5\right)}=\dfrac{-9x^2+6x-5+9x^2-6x+1}{2\left(9x^2-6x+5\right)}\)
\(B=\dfrac{-1}{2}+\dfrac{\left(3x-1\right)^2}{2\left(3x-1\right)^2+8}\)
Do : \(\dfrac{\left(3x-1\right)^2}{2\left(3x-1\right)^2+8}\) ≥ 0 ∀x
⇒ \(\dfrac{-1}{2}+\dfrac{\left(3x-1\right)^2}{2\left(3x-1\right)^2+8}\) ≥ \(\dfrac{-1}{2}\)
⇒ \(B_{Min}=\dfrac{-1}{2}\) ⇔ \(x=\dfrac{1}{3}\)