K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 6 2018

Lời giải:

Ta có: \(Q=\frac{(x+1)^2-x}{(x+1)^2}=1-\frac{x}{(x+1)^2}\)

\(Q=\frac{3}{4}+\frac{1}{4}-\frac{x}{(x+1)^2}=\frac{3}{4}+\frac{(x+1)^2-4x}{4(x+1)^2}\)

\(Q=\frac{3}{4}+\frac{(x-1)^2}{4(x+1)^2}\)

\((x-1)^2; (x+1)^2> 0, \forall x\in\mathbb{R}\neq -1\)

\(\Rightarrow \frac{(x-1)^2}{4(x+1)^2}\geq 0\Rightarrow Q\geq \frac{3}{4}\)

Vậy GTNN của Q là $\frac{3}{4}$. Dấu bằng xảy ra khi \(x=1\)

3 câu này bạn áp dụng cái này nhé.

`a^2 >=0 forall a`.

`|a| >=0 forall a`.

`1/a` xác định `<=> a ne 0`.

a: P=(x+30)^2+(y-4)^2+1975>=1975 với mọi x,y

Dấu = xảy ra khi x=-30 và y=4

b: Q=(3x+1)^2+|2y-1/3|+căn 5>=căn 5 với mọi x,y

Dấu = xảy ra khi x=-1/3 và y=1/6

c: -x^2-x+1=-(x^2+x-1)

=-(x^2+x+1/4-5/4)

=-(x+1/2)^2+5/4<=5/4

=>R>=3:5/4=12/5

Dấu = xảy ra khi x=-1/2

NV
25 tháng 8 2021

Đặt \(x+3=t\ne0\Rightarrow x=t-3\)

\(A=\dfrac{\left(t+2\right)\left(t-4\right)}{t^2}=\dfrac{t^2-2t-8}{t^2}=-\dfrac{8}{t^2}-\dfrac{2}{t}+1=-8\left(\dfrac{1}{t}+\dfrac{1}{8}\right)^2+\dfrac{9}{8}\le\dfrac{9}{8}\)

\(A_{max}=\dfrac{9}{8}\) khi \(t=-8\) hay \(x=-11\)

17 tháng 2 2018

Áp dụng bất đẳng thức AM - GM, ta có:

\(S=\dfrac{1}{\left(x-1\right)^2}+\dfrac{1}{\left(2-x\right)^2}+\dfrac{1}{\left(x-1\right)\left(2-x\right)}\)

\(\ge3\sqrt[3]{\dfrac{1}{\left(x-1\right)^2}\times\dfrac{1}{\left(2-x\right)^2}\times\dfrac{1}{\left(x-1\right)\left(2-x\right)}}\)

\(=\dfrac{3}{\left(x-1\right)\left(x-2\right)}=\dfrac{3}{-x^2+3x-2}\)

\(-x^2+3x-2=-\left(x-\dfrac{3}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)

nên \(S\ge\dfrac{3}{\dfrac{1}{4}}=12\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\dfrac{1}{\left(x-1\right)^2}=\dfrac{1}{\left(2-x\right)^2}=\dfrac{1}{\left(x-1\right)\left(2-x\right)}\\x-\dfrac{3}{2}=0\end{matrix}\right.\)

\(\Leftrightarrow x=\dfrac{3}{2}\left(\text{ nhận }\right)\)

Vậy \(Min_S=12\Leftrightarrow x=\dfrac{3}{2}\)

21 tháng 11 2023

loading...  loading...  

\(\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{4}\ge\dfrac{5}{4}\)

nên \(\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{4}\right]^2\ge\dfrac{25}{16}\)

Dấu '=' xảy ra khi x=-1/2

25 tháng 5 2022

Có \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{4}\ge\dfrac{5}{4}\forall x\)

\(A=\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{4}\right]^2\ge\left(\dfrac{5}{4}\right)^2=\dfrac{25}{16}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\)

Vậy min \(A=\dfrac{25}{16}\Leftrightarrow x=\dfrac{-1}{2}\)

AH
Akai Haruma
Giáo viên
6 tháng 1 2023

Lời giải:

Áp dụng BĐT Bunhiacopxky:

$2x^2+2=2(x^2+1)=(1^2+1^2)(x^2+1)\geq (x+1)^2$

$\Rightarrow Q=\frac{2x^2+2}{(x+1)^2}\geq \frac{(x+1)^2}{(x+1)^2}=1$

Vậy GTNN của $Q$ là $1$. Giá trị này đạt tại $\frac{1}{x}=\frac{1}{1}$ hay $x=1$

NV
4 tháng 4 2021

\(A=\left|2021-x\right|+\dfrac{1}{2}\left|4040-2x\right|\)

\(A=\left|2021-x\right|+\left|2020-x\right|\)

\(A=\left|2021-x\right|+\left|x-2020\right|\ge\left|2021-x+x-2020\right|=1\)

\(A_{min}=1\) khi \(2020\le x\le2021\)

5 tháng 5 2017

\(D=\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{3}\right|+\left|x+\dfrac{1}{4}\right|\)

\(=\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{3}\right|+\left|-\left(x+\dfrac{1}{4}\right)\right|\)

\(=\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{3}\right|+\left|-x-\dfrac{1}{4}\right|\)

\(\ge x+\dfrac{1}{2}+0-x-\dfrac{1}{4}=\dfrac{1}{4}\)

Đẳng thức xảy ra khi \(x=-\dfrac{1}{3}\)

Vậy với \(x=-\dfrac{1}{3}\) thì \(D_{Min}=\dfrac{1}{4}\)

5 tháng 5 2017

Ta có : | x + 1/2 | > hoặc = 0

| x + 1/3 | > hoặc = 0

| x + 1/4 | > hoặc = 0

=> D = | x + 1/2 | + | x + 1/3 | + | x + 1/4 | > hoặc = 0

Dấu " = " xảy ra khi D = 0

Vậy GTNN của biểu thức D là 0