CMR:\(1^{2002}+2^{2002}+...+2008^{2002}-4⋮2003\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2002+2002.2+2002.3+2002.4+2003.5+2003.6
=2002.(1+2+3+4)+2003.(5+6)
=2002.10+2003.11
=2002.10+2003.10+2003
=10.(2002+2003)+2003
=10.4005+2003
=40050+2003
=42053
=(1-2-3+4)+(5-6-7+8)+...+(2005-2006-2007+2008)+2009
=2009
\(A=\frac{2002}{2001}+\frac{2003}{2002}+\frac{2004}{2003}+\frac{2005}{2004}+\frac{2006}{2005}+\frac{2007}{2006}+\frac{2008}{2007}+\frac{2009}{2008}>\frac{2001}{2001}+\frac{2002}{2002}+\frac{2003}{2003}+\frac{2004}{2004}+\frac{2005}{2005}+\frac{2006}{2006}+\frac{2007}{2007}+\frac{2008}{2008}\)
\(A=\frac{2002}{2001}+\frac{2003}{2002}+\frac{2004}{2003}+\frac{2005}{2004}+\frac{2006}{2005}+\frac{2007}{2006}+\frac{2008}{2007}+\frac{2009}{2008}>1+1+1+1+1+1+1+1\)\(A=\frac{2002}{2001}+\frac{2003}{2002}+\frac{2004}{2003}+\frac{2005}{2004}+\frac{2006}{2005}+\frac{2007}{2006}+\frac{2008}{2007}+\frac{2009}{2008}>8\)
\(A>8\)
Bạn tham khảo định lý Fermat để làm được bài nhé
ai chả biết là dùng định lí Fermat nhỏ nhưng làm thế nào mới quan trọng