Rút gọn
A= căn 8+ 2 căn 7 trừ căn 8- 2 căn 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=50-3\sqrt{98}+2\sqrt{8}+3\sqrt{32}-5\sqrt{18}\)
\(=50-3.\sqrt{7^2.2}+2\sqrt{2^2.2}+3\sqrt{4^2.2}-5\sqrt{3^2.2}\)
\(=50-3.7\sqrt{2}+2.2\sqrt{2}+3.4\sqrt{2}-5.3\sqrt{2}\)
\(=50-21\sqrt{2}+4\sqrt{2}+12\sqrt{2}-15\sqrt{2}\)
\(=50+\sqrt{2}.\left(-21+4+12-15\right)\)
\(=50+\sqrt{2}.\left(-20\right)\)
\(=50-20\sqrt{2}\)
\(C=\left(\sqrt{3}+\sqrt{5}+\sqrt{7}\right)\left(\sqrt{3}+\sqrt{5}-\sqrt{7}\right)\)
\(=\left(\sqrt{3}+\sqrt{5}\right)^2-\sqrt{7}^2\)
\(=\sqrt{3}^2+2.\sqrt{3}.\sqrt{5}+\sqrt{5}^2-7\)
\(=2\sqrt{15}+3+5-7\)
\(=2\sqrt{15}+1\)
Nghĩ ra xong tính thử thấy đúng định nàm xong thấy mẹ giải r ấy:")). Với nại con còn nhỏ nắm, hong bic nhiều cái mà nớp 9 hay sử dụng nữa ý, sợ dùng sai;-;.
Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ bên trái khung soạn thảo) để được hỗ trợ tốt hơn.
a: \(=9\sqrt{2}-4\sqrt{2}+4\sqrt{2}+9\sqrt{2}=18\sqrt{2}\)
b: \(=8\sqrt{3}-12\sqrt{3}+5\sqrt{3}+2\sqrt{3}=3\sqrt{3}\)
c: \(=2\sqrt{21}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\left(1+\sqrt{2}\right)\left(\sqrt{2}+\sqrt{3}+2\right)}{2+\sqrt{2}+\sqrt{3}}\)
=1+căn 2
\(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{4}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\left(\sqrt{2}+\sqrt{4}\right)+\left(\sqrt{6}+\sqrt{3}\right)+\left(\sqrt{4}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\sqrt{2}\left(1+\sqrt{2}\right)+\sqrt{3}\left(1+\sqrt{2}\right)+\sqrt{4}\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\left(1+\sqrt{2}\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=1+\sqrt{2}\)
a: Ta có: \(4\sqrt{3a}-3\sqrt{12a}+\dfrac{6\sqrt{a}}{3}-2\sqrt{20a}\)
\(=4\sqrt{3a}-6\sqrt{3a}+2\sqrt{2a}-4\sqrt{5a}\)
\(=-2\sqrt{3a}+2\sqrt{2a}-4\sqrt{5a}\)
a) \(15\sqrt{\dfrac{4}{3}}-5\sqrt{48}+2\sqrt{12}-6\sqrt{\dfrac{1}{3}}\)
\(=\sqrt{15^2\cdot\dfrac{4}{3}}-5\cdot4\sqrt{3}+2\cdot2\sqrt{3}-\sqrt{6^2\cdot\dfrac{1}{3}}\)
\(=\sqrt{\dfrac{225\cdot4}{3}}-20\sqrt{3}+4\sqrt{3}-\sqrt{\dfrac{36}{3}}\)
\(=\sqrt{75\cdot4}-16\sqrt{3}-\sqrt{12}\)
\(=10\sqrt{3}-16\sqrt{3}-2\sqrt{3}\)
\(=-8\sqrt{3}\)
b) \(\dfrac{15}{\sqrt{6}+1}-\dfrac{3}{\sqrt{7}-\sqrt{2}}-15\sqrt{6}+3\sqrt{7}\)
\(=\dfrac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}-\dfrac{3\left(\sqrt{7}+\sqrt{2}\right)}{\left(\sqrt{7}-\sqrt{2}\right)\left(\sqrt{7}+\sqrt{2}\right)}-15\sqrt{6}+3\sqrt{7}\)
\(=\dfrac{15\left(\sqrt{6}-1\right)}{6-1}-\dfrac{3\sqrt{7}+3\sqrt{2}}{7-2}-15\sqrt{6}+3\sqrt{7}\)
\(=3\left(\sqrt{6}-1\right)-\dfrac{3\sqrt{7}+3\sqrt{2}}{5}-15\sqrt{6}+3\sqrt{7}\)
\(=3\sqrt{6}-3-\dfrac{3\sqrt{7}+3\sqrt{2}}{5}-15\sqrt{6}+3\sqrt{7}\)
\(=-12\sqrt{6}-3+3\sqrt{7}-\dfrac{3\sqrt{7}+3\sqrt{2}}{5}\)
\(=\dfrac{-60\sqrt{6}-15+15\sqrt{7}-3\sqrt{7}-3\sqrt{2}}{5}\)
\(=\dfrac{-60\sqrt{6}-15+12\sqrt{7}-3\sqrt{2}}{5}\)
A= \(\sqrt{8}\) +2 \(\sqrt{7}\) - \(\sqrt{8}\) -2\(\sqrt{7}\)
=(\(\sqrt{8}\) -\(\sqrt{8}\) ) + (2\(\sqrt{7}\) - 2\(\sqrt{7}\) )
= 0
Ý mik là: căn 8 + 2 căn 7 là 1 số (1)
căn 8 - 2 căn 7 là 1 số (2)
Và A= (1) -(2)
Mong các bn hiểu