K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2018

\(a^8+a^4+1=\left(a^8+2a^4+1\right)-a^4\)

\(=\left(a^4+1\right)^2-a^4\)

\(=\left(a^4-a^2+1\right)\left(a^4+a^2+1\right)\)

\(=\left[\left(a^4-2a^2+1\right)-a^2\right]\left(a^4+a^2+1\right)\)

\(=\left[\left(a^2-1\right)^2-a^2\right]\left(a^4+a^2+1\right)\)

\(=\left(a^2-a-1\right)\left(a^2-a+1\right)\left(a^4+a^2+1\right)\)

*\(a^8+a^7+1=a^8+a^7+a^6-a^6+a^5-a^5+a^4-a^4+a^3-a^3+a^2-a^2+a-a+1\)\(=\left(a^8+a^7+a^6\right)+\left(a^5+a^4+a^3\right)+\left(a^2+a+1\right)-\left(a^6+a^5+a^4\right)-\left(a^3+a^2+a\right)\)\(=a^6\left(a^2+a+1\right)+a^3\left(a^2+a+1\right)+\left(a^2+a+1\right)-a^4\left(a^2+a+1\right)-a\left(a^2+a+1\right)\)\(=\left(a^2+a+1\right)\left(a^6-a^4+a^3-a+1\right)\)

13 tháng 9 2016

Goi y la them bot

20 tháng 10 2018

\(x^7+x^2+1\)

\(=\left(x^7+x^6+x^5\right)-\left(x^6+x^5+x^4\right)+\left(x^4+x^3+x^2\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\)

\(=x^5\left(x^2+x+1\right)-x^4\left(x^2+x+1\right)+x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)

21 tháng 7 2017

ta có : x^8 +x^4 +1= (x^8 -x^5) +(x^5-x^2) +(x^4 -x) +(x^2 +x 1)=x^5.(x^3 -1) +x^2(x^3-1) +x(x^3-1) +(x^2 +x+1)=x^5.(x-1)(x^2 +x+1) +x^2(x-1)(x^2 +x+1) +x(x-1)(x^2 +x+1) +(x^2 +x+10=(x^2 +x+1)(x^6- x^5 +x^3 -x +1)

5 tháng 10 2019

Gợi ý:

Nhóm:\(\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]-8\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-8\)

Đặt \(t=x^2+5x+4\) thì biểu thức trở thành:

\(t\left(t+2\right)-8=t^2+2t-8=\left(t-2\right)\left(t+4\right)\)

Rồi bạn làm tiếp, nếu còn phân tích được thì phải phân tích, mình bận rồi.

5 tháng 10 2019

(x + 1)(x + 2)(x + 3)(x + 4) - 8

= [(x + 1)(x + 4)][(x + 2)(x + 3)] - 8

= (x2 + 4x + x + 4)(x2 + 3x + 2x + 6) - 8

= (x2 + 5x + 4)(x2 + 5x + 6) - 8

Đặt x2 + 5x + 5 = t

⇒ (x2 + 5x + 5 - 1)(x2 + 5x + 5 + 1) - 8 (1)

Thay t = x2 + 5x + 5 vào (1), ta có:

(t - 1)(t + 1) - 8 = t2 - 1 - 8 = t2 - 9

= (t - 3)(t + 3)

⇔ (x2 + 5x + 5 - 3)(x2 + 5x + 5 + 3)

= (x2 + 5x + 2)(x2 + 5x + 8)

Chúc bạn học tốt !!!!!!!! vuivuivui

11 tháng 10 2015

b/ \(=x^8-x^7+x^5-x^4+x^2+x^6-x^5+x^3-x^2+1+x^7-x^6+x^4-x^3+x\)

\(=x^2\left(x^6-x^5+x^3-x^2+1\right)+\left(x^2-x^5+x^3-x^2+1\right)+x\left(x^6-x^5+x^3-x^2+1\right)\)

\(=\left(x^6-x^5+x^3-x^2+1\right)\left(x^2+1+x\right)\)

28 tháng 6 2016

\(x^4+2x^2+1=\left(x^2+1\right)^2\) (Nhớ k cho mình với nhé!)

14 tháng 6 2018

\(x^8+3x^4+1=\left(x^8+\frac{2.3x^4}{2}+\frac{9}{4}\right)-\frac{5}{4}\)

\(=\left(x^4+\frac{3}{2}\right)^2-\frac{5}{4}=\left(x^4+\frac{3-\sqrt{5}}{2}\right)\left(x^4+\frac{3+\sqrt{5}}{2}\right)\)

14 tháng 6 2018

Phân tích xấu lắm bạn ạ

7 tháng 7 2016

Đặt \(A=\left(x-y+4\right)^2-\left(3x+3y-1\right)^2\)

Ta có:

\(\left(x-y+4\right)^2=x^2-xy+4x-yx+y^2-4y+4x-4y+16\)

                          \(=x^2+y^2-2xy+8x-8y+16\)

\(\left(3x+3y-1\right)^2=9x^2+9xy-3x+9xy+9y^2-3y-3x-3y+1\)

                               \(=9x^2+9y^2-6x-6y+18xy+1\)

Mình làm đến đây bạn trừ 2 kết quả cho nhau rồi sẽ ra

6 tháng 10 2016

a) \(x^7+x^2+1\)

\(=x^7-x+x+x^2+1\)

\(=\left(x^7-x\right)+\left(x^2+x+1\right)\)

\(=x\left(x^6-1\right)+\left(x^2+x+1\right)\)

\(=x\left(x^3+1\right)\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(=x\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^4+x\right)\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^5-x^4+x^2-x\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^5-x^4+x^2-x+1\right)\left(x^2+x+1\right)\)

6 tháng 10 2016

b) \(x^7+x^5+1\)

\(=x^7+x^6+x^5-x^6+1\)

\(=\left(x^7+x^6+x^5\right)-\left(x^6-1\right)\)

\(=x^5\left(x^2+x+1\right)-\left(x^3+1\right)\left(x^3-1\right)\)

\(=x^5\left(x^2+x+1\right)-\left(x^4-x^3+x-1\right)\left(x^2+x+1\right)\)

\(=\left(x^5-x^4+x^3-x^2+1\right)\left(x^2+x+1\right)\)