CMR:
\(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{2500}}< 100\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`1)` Ta có `:` `1/sqrt1;1/sqrt2;1/sqrt3;…;1/sqrt99>1/sqrt100`
`=>` `1/sqrt1+1/sqrt2+1/sqrt3+…+1/sqrt99+1/sqrt100>100. 1/sqrt100=100/10=10`
`=>` `đpcm`
Ta có :
\(\dfrac{1}{\sqrt{1}}>\dfrac{1}{\sqrt{100}}\\ \dfrac{1}{\sqrt{2}}>\dfrac{1}{\sqrt{100}}\\ .........\\ \dfrac{1}{\sqrt{100}}=\dfrac{1}{\sqrt{100}}\)
\(\Rightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{100}}>\dfrac{1}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}+....+\dfrac{1}{\sqrt{100}}\)( 100 phân số \(\dfrac{1}{\sqrt{100}}\) )
hay \(A>\dfrac{1}{10}+\dfrac{1}{10}+\dfrac{1}{10}+....+\dfrac{1}{10}\)(100 phân số \(\dfrac{1}{10}\) )
\(\Rightarrow A>\dfrac{100}{10}\\ \Rightarrow A>10\)
KL : Vậy ....
Đặt A=\(\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{4}}+...+\dfrac{1}{\sqrt{100}}\)
\(\Leftrightarrow A=\dfrac{2}{2\sqrt{2}}+\dfrac{2}{2\sqrt{3}}+....+\dfrac{2}{2\sqrt{100}}\)
\(\Leftrightarrow A=\dfrac{2}{\sqrt{2}+\sqrt{2}}+\dfrac{2}{\sqrt{3}+\sqrt{3}}+....+\dfrac{2}{\sqrt{99}+\sqrt{99}}+\dfrac{2}{\sqrt{100}+\sqrt{100}}\)
\(\Leftrightarrow A=2\left(\dfrac{1}{\sqrt{2}+\sqrt{2}}+\dfrac{1}{\sqrt{3}+\sqrt{3}}+...+\dfrac{1}{\sqrt{99}+\sqrt{99}}+\dfrac{1}{\sqrt{100}+\sqrt{100}}\right)\)
Ta có:
\(\dfrac{1}{\sqrt{2}+\sqrt{2}}< \dfrac{1}{1+\sqrt{2}};\dfrac{1}{\sqrt{3}+\sqrt{3}}< \dfrac{1}{\sqrt{2}+\sqrt{3}}\)
Tường tự, ta có:
\(\dfrac{A}{2}< \dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)
\(A< 2\left(\dfrac{1-\sqrt{2}}{-1}+\dfrac{\sqrt{2}-\sqrt{3}}{-1}+\dfrac{\sqrt{99}-\sqrt{100}}{-1}\right)\)
\(A< -2\left(1-\sqrt{2}+\sqrt{2}-\sqrt{3}+...-\sqrt{99}+\sqrt{99}-\sqrt{100}\right)\)
\(A< -2\left(1-\sqrt{100}\right)\)
\(A< 18\)
Vậy\(\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{4}}+...+\dfrac{1}{\sqrt{100}}< 18\)
ta có :
\(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}\)
\(=\dfrac{2}{2\sqrt{1}}+\dfrac{2}{2\sqrt{2}}+\dfrac{2}{2\sqrt{3}}+...+\dfrac{2}{2\sqrt{100}}\)
\(>\dfrac{2}{\sqrt{1}+\sqrt{2}}+\dfrac{2}{\sqrt{2}+\sqrt{3}}+\dfrac{2}{\sqrt{3}+\sqrt{4}}+...+\dfrac{2}{\sqrt{100}+\sqrt{101}}\)
\(=2\left(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{100}+\sqrt{101}}\right)\)
\(=2\left(\dfrac{\sqrt{1}-\sqrt{2}}{1-2}+\dfrac{\sqrt{2}-\sqrt{3}}{2-3}+\dfrac{\sqrt{3}+\sqrt{4}}{3-4}+...+\dfrac{\sqrt{100}-\sqrt{101}}{100-101}\right)\)
\(=2\left(\dfrac{\sqrt{1}-\sqrt{101}}{-1}\right)=2\left(\sqrt{101}-\sqrt{1}\right)=18,1\)
\(>18\)
\(\Rightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}>18\)
\(linh=\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+....+\dfrac{1}{\sqrt{99}}+\dfrac{1}{\sqrt{100}}\)
\(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{1}}>\dfrac{1}{\sqrt{100}}\\\dfrac{1}{\sqrt{2}}>\dfrac{1}{\sqrt{100}}\\.............\\\dfrac{1}{\sqrt{99}}>\dfrac{1}{\sqrt{100}}\end{matrix}\right.\)
Suy ra:
\(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+....+\dfrac{1}{\sqrt{99}}>\dfrac{1}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}+...+\dfrac{1}{\sqrt{100}}\)
\(\Leftrightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{99}}>\dfrac{99}{\sqrt{100}}\)
\(linh=\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+.....+\dfrac{1}{\sqrt{99}}+\dfrac{1}{\sqrt{100}}>\dfrac{99}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}\)
\(\)\(linh>10\left(đpcm\right)\)
Bài này ko phải 100 nhé
\(A=\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)
\(=\dfrac{\sqrt{2}-\sqrt{1}}{\left(\sqrt{1}+\sqrt{2}\right)\left(\sqrt{2}-\sqrt{1}\right)}+\dfrac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}+...+\dfrac{\sqrt{100}-\sqrt{99}}{\left(\sqrt{100}-\sqrt{99}\right)\left(\sqrt{100}+\sqrt{99}\right)}\)
\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}=\sqrt{100}-\sqrt{1}=10-1=9\)
cả 2 ý bạn trục căn thức ở mấu là xong nhé:
vd: \(\dfrac{1}{\sqrt{1}+\sqrt{2}}=\dfrac{\sqrt{1}-\sqrt{2}}{-1}\). Rồi tương tự như vậy