K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2018

a, Xét tam giác BEC và tam giác CDB có :

\(\left\{{}\begin{matrix}CE=BD\left(gt\right)\\\widehat{BCE}=\widehat{CBD}\left(kềbùvớihaigócbằngnhau\widehat{ABC}=\widehat{ACB}\right)\\BClàcạnhchung\end{matrix}\right.\\ \Rightarrow\Delta BCE=\Delta CBD\left(c-g-c\right)\\ \Rightarrow\widehat{CBE}=\widehat{BCD}\left(haigóctươngứng\right)\)

\(\Rightarrow\widehat{BDE}=\widehat{CED}\left(haigóctươngứng\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\Delta BICcântạiI\\\Delta DIEcântạiI\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}IB=IC\\ID=IE\end{matrix}\right.\)

b, Xét 2 tam giác cân BIC và DIE có :

\(\left\{{}\begin{matrix}\widehat{CBI}+\widehat{BCI}+\widehat{BIC}=180^0\\\widehat{DEI}+\widehat{IDE}+\widehat{DIE}=180^0\end{matrix}\right.\)

Ta có : \(\widehat{BIC}=\widehat{DIE}\)( hai góc đối đỉnh )

\(\Rightarrow\widehat{CBI}+\widehat{BCI}=\widehat{DEI}+\widehat{IDE}\)

Mà : \(\widehat{CBI}=\widehat{BCI};\widehat{DEI}=\widehat{IDE}\)

\(\Rightarrow\widehat{CBI}=\widehat{BCI}=\widehat{DEI}=\widehat{IDE}\)

\(\Rightarrow BC//DE\)( vì góc BCD và góc CDE nằm ở vị trí so le trong )

c, Xét tam giác ABM và tam giác ACM có :

\(\left\{{}\begin{matrix}AB=AC\left(gt\right)\\AMlàcạnhchung\\BM=MC\left(gt\right)\end{matrix}\right.\\ \Rightarrow\Delta ABM=\Delta ACM\left(c-c-c\right)\\ \Rightarrow\widehat{BAM}=\widehat{CAM}\left(haigóctươngứng\right)\)

\(\Rightarrow\) AM là tia phân giác của góc BAC (1)

Xét tam giác ABI và tam giác ACI có :

\(\left\{{}\begin{matrix}AB=AC\left(gt\right)\\AIlàcạnhchung\\BI=MI\left(cmt\right)\end{matrix}\right.\\ \Rightarrow\Delta ABI=\Delta ACI\left(c-c-c\right)\\ \Rightarrow\widehat{BAI}=\widehat{CAI}\left(haigóctươngứng\right)\)

\(\Rightarrow\)AI là tia phân giác của góc BAC (2)

Từ (1) và (2) ta có :

AI trùng với AM ( vì cùng là tia phân giác góc BAC)

\(\Rightarrow\) A, M, I thẳng hàng.

30 tháng 5 2018
https://i.imgur.com/P7WapK6.jpg
3 tháng 5 2019

12 tháng 2 2022

 như cc

2 tháng 3 2016

hỏi you khác đi

mà toán hình àk ko ai giải đâu

duyệt đi

2 tháng 3 2016

a) Có AB = AC (gt)
BD = CE (gt)
--> AB + BD = AC + CE
--> AD = AE
Xét tam giác ADC và tam giác AEB, có
AC = AB 
^DAC = ^EAB 
AD = AE (cmt) 
--> tg ADC = tg AEB ( c.g.c(
--> ^D = ^E 
^ACD = ^ABE  
--> 180 độ - ^ACD = 180 độ - ^ABE
--> ^ICE = ^ IBD 
Tự CM tg IBD = tg ICE ( g. c .g )
--> IB = IC, ID = IE

b) Xét tg IBC và tg IED
2 tg = nhau theo TH (c.g.c)
--> ^CBI = ^DEI 
2 góc này ở vị trí SLT
--> BC // DE

c) Xét tg ABI và tg ACI, có
AB = AC (gt)
Chung AI
BI = IC (cmt)
-->  tg ABI = tg ACI --> ^BAI = ^CAI
--> AI là p/g ^BAC
CMTT --> AM cũng là p/g ^BAC
--> A, I, M thẳng hàng. <3 

18 tháng 1 2018

)BD=CE mà AB=AC -> EA=DA
a) xét tam giác EAB và tam giác DAC có :
AB=AC ( tam giác ABC cân tại A )
góc EAB = góc DAC (đối đỉnh )
EA=AD (cmt)
-> tam giác EAB=tam giác DAC ( c.g.c)
-> góc EBA = góc DCA ( cặp góc tương ứng )
-> ED=DC ( cặp cạnh tương ứng )
*) tam giác ABC cân tại A -> góc B = góc C
mà góc EBA=góc DCA -> góc EBC= góc DCB
-> tan giác IBC cân tại I -> IB=IC
**) IB=IC ( cmt )
mà EB=DC
-> ID=IE

b) tam giác AED có AE=AD
-> tam giác AED cân tại A -> góc AED = góc EDA (1)
góc B = góc C (cmt) (2)
góc EAD = góc BAC ( đối đỉnh ) (3)
từ (1), (2), (3) -> góc AED = góc ACB
mà 2 góc ở vị trí so le trong -> ED//BC
c) ED cắt IA tại H
xét tam giác IEA và tam giác IDA (cm tương tự ) 2 tam giác = nhau theo trường hợp cạnh góc cạnh

-> I,H,A thẳng hàng (4)
vì ED//BC .
M là trung điểm của BC -> M cũng là trung điểm của ED
-> H , A , M thằng hàng (5)
từ (4) và (5) -> I ,A,M thẳng hàng

30 tháng 12 2018

)BD=CE mà AB=AC -> EA=DA
a) xét tam giác EAB và tam giác DAC có :
AB=AC ( tam giác ABC cân tại A )
góc EAB = góc DAC (đối đỉnh )
EA=AD (cmt)
-> tam giác EAB=tam giác DAC ( c.g.c)
-> góc EBA = góc DCA ( cặp góc tương ứng )
-> ED=DC ( cặp cạnh tương ứng )
*) tam giác ABC cân tại A -> góc B = góc C
mà góc EBA=góc DCA -> góc EBC= góc DCB
-> tan giác IBC cân tại I -> IB=IC
**) IB=IC ( cmt )
mà EB=DC
-> ID=IE
b) tam giác AED có AE=AD
-> tam giác AED cân tại A -> góc AED = góc EDA (1)
góc B = góc C (cmt) (2)
góc EAD = góc BAC ( đối đỉnh ) (3)
từ (1), (2), (3) -> góc AED = góc ACB
mà 2 góc ở vị trí so le trong -> ED//BC
c) ED cắt IA tại H
xét tam giác IEA và tam giác IDA (cm tương tự ) 2 tam giác = nhau theo trường hợp cạnh góc cạnh

-> I,H,A thẳng hàng (4)
vì ED//BC .
M là trung điểm của BC -> M cũng là trung điểm của ED
-> H , A , M thằng hàng (5)
từ (4) và (5) -> I ,A,M thẳng hàng

4 tháng 2 2016

Mik chưa học lớp 7 sorry bạn

4 tháng 2 2016

a/IB ; IC = nhau vì có đoạn thẳng BC ở giữa

ID= IE vì có tia gốc là tia IB và IC = nhau

b/ vì có d.thẳng BE cắt CD tại I

c / thẳng hàng vi tam giac ABC cân tại A, M là trug điểm của BC và I là giao điểm cua CD và BE

olm duyệt đi

15 tháng 5 2017

A B C D E M I

19 tháng 5 2017

I A B C D E M 1 2 2 1

a) Vì AB = AC (do \(\Delta ABC\) cân tại A)

BD = CE (gt)

=> AD = AE

Xét hai tam giác ABE và ACD có:

AB = AC (do \(\Delta ABC\) cân tại A)

\(\widehat{A}\): góc chung

AD = AE (cmt)

Vậy: \(\Delta ABE=\Delta ACD\left(c-g-c\right)\)

Suy ra: BE = CD (hai cạnh tương ứng) (1)

\(\widehat{ABE}=\widehat{ACD}\) (hai góc tương ứng) (2)

\(\Delta ABC\) cân tại A nên \(\widehat{B_1}=\widehat{C_1}\) (3)

Từ (2) và (3) suy ra:

\(\widehat{ABE}-\widehat{B_1}=\widehat{ACD}-\widehat{C_1}\) hay \(\widehat{B_2}=\widehat{C_2}\)

Vậy \(\Delta BIC\) cân tại I, suy ra: IB = IC (4)

Từ (1) và (4) suy ra:

BE - IB = CD - IC hay IE = ID

b) Các tam giác cân ABC và ADE có chung góc ở đỉnh A nên \(\widehat{B_1}=\widehat{ADE}\) (hai góc đồng vị)

Do đó: BC // DE

c) Xét hai tam giác BIM và CIM có:

MB = MC (gt)

\(\widehat{B_2}=\widehat{C_2}\)(cmt)

IB = IC (do \(\Delta BIC\) cân tại I)

Vậy: \(\Delta BIM=\Delta CIM\left(c-g-c\right)\)

Suy ra: \(\widehat{IMB}=\widehat{IMC}\) (hai góc tương ứng)

\(\widehat{IMB}+\widehat{IMC}=180^o\) (kề bù)

Nên \(\widehat{IMB}=\widehat{IMC}\) = 90o (1)

Ta lại có: \(\widehat{IMB}+\widehat{AMB}=180^o\) (kề bù)

\(\widehat{IMB}=90^o\)

\(\Rightarrow\widehat{AMB}=90^o\) (2)

Từ (1) và (2) suy ra: ba điểm A, M, I thẳng hàng (đpcm).