K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2018

a) 4x3 - 13x2 + 9x - 18

= 4x3 - 12x2 - x2 + 3x + 6x - 18

= 4x2( x - 3) - x( x - 3) + 6( x - 3)

= ( x - 3)( 4x2 - x + 6)

b) - x3 - 6x2 + 6x + 1

= 6x( 1 - x) + 1 - x3

= 6x( 1 - x) + ( 1 - x )( x2 + x + 1)

= ( 1 - x)( x2 + 7x + 1)

c) x3 + 3x2 + 3x + 2

= x3 + 2x2 + x2 + 2x + x + 2

= x2( x + 2) + x( x + 2) + x + 2

= ( x + 2)( x2 + x + 1)

a) \(4x^3-13x^2+9x-18\)

\(=4x^3-12x^2-x^2+3x+6x-18\)

\(=4x^2\left(x-3\right)-x\left(x-3\right)+6\left(x-3\right)\)

\(=\left(x-3\right)\left(4x^2-x+6\right)\)

24 tháng 10 2021

a) \(\Rightarrow\left(x-1\right)^3=0\Rightarrow x=1\)

b) \(\Rightarrow\left(x^3-1\right)\left(x^3+1\right)=0\Rightarrow\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)(do \(\left\{{}\begin{matrix}x^2-x+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\\x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\end{matrix}\right.\))

c) \(\Rightarrow4x\left(x^2-9\right)=0\Rightarrow4x\left(x-3\right)\left(x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)

d) \(\Rightarrow\left(x-2\right)^3=0\Rightarrow x=2\)

24 tháng 10 2021

a) \(x^3-3x^2+3x-1=0\Rightarrow\left(x-1\right)^3=0\Rightarrow x-1=0\)

      \(\Rightarrow x=1\)

b) \(x^6-1=0\Rightarrow\left(x^3\right)^2-1=0\Rightarrow\left(x^3-1\right)\left(x^3+1\right)=0\)

    \(\Rightarrow\left[{}\begin{matrix}x^3-1=0\\x^3+1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

c) \(4x^3-36x=0\Rightarrow4x\left(x^2-36\right)=0\Rightarrow4x\left(x-6\right)\left(x+6\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}4x=0\\x-6=0\\x+6=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\\x=-6\end{matrix}\right.\)

d) \(x^3-6x^2+12x-8=0\) (đề bài như vậy mới làm đc, nếu là +8 thì mình xin bó tay nhé)

     \(\Rightarrow x^3-3\cdot x^2\cdot2+3\cdot x\cdot2^2-2^3=0\)

     \(\Rightarrow\left(x-2\right)^3=0\Rightarrow x-2=0\Rightarrow x=2\)

18 tháng 2 2022

\(a)x^2-9x+20=0 \\<=>(x-4)(x-5)=0 \\<=>x=4\ hoặc\ x=5 \\b)x^2-3x-18=0 \\<=>(x+3)(x-6)=0 \\<=>x=-3\ hoặc\ x=6 \\c)2x^2-9x+9=0 \\<=>(x-3)(2x-3)=0 \\<=>x=3\ hoặc\ x=\dfrac{3}{2}\)

 

d: \(\Leftrightarrow3x^2-6x-2x+4=0\)

=>(x-2)(3x-2)=0

=>x=2 hoặc x=2/3

e: \(\Leftrightarrow3x\left(x^2-2x-3\right)=0\)

=>x(x-3)(x+1)=0

hay \(x\in\left\{0;3;-1\right\}\)

f: \(\Leftrightarrow x^2-5x-2+x=0\)

\(\Leftrightarrow x^2-4x-2=0\)

\(\Leftrightarrow\left(x-2\right)^2=6\)

hay \(x\in\left\{\sqrt{6}+2;-\sqrt{6}+2\right\}\)

10 tháng 12 2020

a) \(\left(x^5+4x^3-6x^2\right):4x^2\)

\(=\left(x^5:4x^2\right)+\left(4x^3:4x^2\right)+\left(-6x^2:4x^2\right)\)

\(=\dfrac{1}{4}x^3+x-\dfrac{3}{2}\)

b)  x^3 + x^2 - 12 x-2 x^3 - 2x^2 3x^2 - 12 3x^2 - 6x 6x - 12 x^2+3x+6 6x - 12 0

Vậy \(\left(x^3+x^2-12\right):\left(x-2\right)=x^2+3x+6\)

c) (-2x5 : 2x2) + (3x2 : 2x2) + (-4x^3 : 2x^2)

\(-x^3+\dfrac{3}{2}-2x\)

d) \(\left(x^3-64\right):\left(x^2+4x+16\right)\)

\(=\left(x-4\right)\left(x^2+4x+16\right):\left(x^2+4x+16\right)\)

\(=x-4\)

(dùng hẳng đẳng thức thứ 7)

Bài 2 :

a) 3x(x - 2) - 5x(1 - x) - 8(x2 - 3)

= 3x2 - 6x - 5x + 5x2 - 8x2 + 24

= (3x2 + 5x2 - 8x2) + (-6x - 5x) + 24 

= -11x + 24

b) (x - y)(x2 + xy + y2) + 2y3

= x3 - y3 + 2y3

= x3 + y3 

c) (x - y)2 + (x + y)2 - 2(x - y)(x + y)

= (x - y)2 - 2(x - y)(x + y) + (x + y)2

= [(x - y) + x + y)2 = [x - y + x + y] = (2x)2 = 4x2

 

18 tháng 10 2021

Bài 1 :

a]=  \(\frac{1}{4}\)x3 + x - \(\frac{3}{2}\).

b] => [x3 + x2 -12 ] = [ x2 +3 ][x-2] + [-6]

c]= -x3 -2x +\(\frac{3}{2}\).

d] = [ x3 - 64 ]  = [ x2 + 4x + 16][ x- 4].

20 tháng 9 2017

ai biết chính xác thì giúp mình nhé

27 tháng 6 2019

ai biet de bai thi giup ban ay nhaoaoa

6 tháng 7 2021

\(a,PT\Leftrightarrow x^3-6x^2+12x-8-x^3+x+6x^2-18x-10=0\)

\(\Leftrightarrow-5x-18=0\)

\(\Leftrightarrow x=-\dfrac{18}{5}\)

Vậy ...

\(b,PT\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+12x-6+10=0\)

\(\Leftrightarrow12x+6=0\)

\(\Leftrightarrow x=-\dfrac{1}{2}\)

Vậy ...

\(c,PT\Leftrightarrow\left(x+1\right)^3+3^3=0\)

\(\Leftrightarrow\left(x+1+3\right)\left(x^2+2x+1-3x-3+9\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x^2-x+7\right)=0\)

Thấy : \(x^2-\dfrac{2.x.1}{2}+\dfrac{1}{4}+\dfrac{27}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{27}{4}\ge\dfrac{27}{4}>0\)

\(\Rightarrow x+4=0\)

\(\Leftrightarrow x=-4\)

Vậy ...

\(d,PT\Leftrightarrow\left(x-2\right)^3+1^3=0\)

\(\Leftrightarrow\left(x-2+1\right)\left(x^2-4x+4-x+2+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-5x+7\right)=0\)

Thấy : \(x^2-5x+7=x^2-\dfrac{5.x.2}{2}+\dfrac{25}{4}+\dfrac{3}{4}=\left(x-\dfrac{5}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)

\(\Rightarrow x-1=0\)

\(\Leftrightarrow x=1\)

Vậy ...

6 tháng 7 2021

sao lại trả lời lại nhỉ ??

a: P(x)=6x^3-4x^2+4x-2

Q(x)=-5x^3-10x^2+6x+11

M(x)=x^3-14x^2+10x+9

b: \(C\left(x\right)=7x^4-4x^3-6x+9+3x^4-7x^3-5x^2-9x+12\)

=10x^4-11x^3-5x^2-15x+21

 

11 tháng 8 2023

a) \(x^3-x^2+3x-3>0\)

\(\Leftrightarrow x^2\left(x-1\right)+3\left(x-1\right)>0\)

\(\Leftrightarrow\left(x^2+3\right)\left(x-1\right)>0\) 

Mà: \(x^2+3>0\forall x\) 

\(\Leftrightarrow x-1>0\)

\(\Leftrightarrow x>1\)

b) \(x^3+x^2+9x+9< 0\)

\(\Leftrightarrow x^2\left(x+1\right)+9\left(x+1\right)< 0\)

\(\Leftrightarrow\left(x^2+9\right)\left(x+1\right)< 0\)

Mà: \(x^2+9>0\forall x\)

\(\Leftrightarrow x+1< 0\)

\(\Leftrightarrow x< -1\)

d) \(4x^3-14x^2+6x-21< 0\)

\(\Leftrightarrow2x^2\left(2x-7\right)+3\left(2x-7\right)< 0\)

\(\Leftrightarrow\left(2x^2+3\right)\left(2x-7\right)< 0\)

Mà: \(2x^2+3>0\forall x\)

\(\Leftrightarrow2x-7< 0\)

\(\Leftrightarrow2x< 7\)

\(\Leftrightarrow x< \dfrac{7}{2}\)

d) \(x^2\left(2x^2+3\right)+2x^2>-3\)

\(\Leftrightarrow2x^4+3x^2+2x^2+3>0\)

\(\Leftrightarrow2x^4+5x^2+3>0\)

\(\Leftrightarrow\left(x^2+1\right)\left(2x^2+3\right)>0\) 

Mà: 

\(x^2+1>0\forall x\)

\(2x^2+3>0\forall x\)

\(\Rightarrow x\in R\)

a: =>x^2(x-1)+3(x-1)>0

=>(x-1)(x^2+3)>0

=>x-1>0

=>x>1

b: =>x^2(x+1)+9(x+1)<0

=>(x+1)(x^2+9)<0

=>x+1<0

=>x<-1

c: 4x^3-14x^2+6x-21<0

=>2x^2(2x-7)+3(2x-7)<0

=>2x-7<0

=>x<7/2

d: =>x^2(2x^2+3)+2x^2+3>0

=>(2x^2+3)(x^2+1)>0(luôn đúng)