K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Phương trình hoành độ giao điểm là:

\(x^2-kx+k-2=0\)

\(\text{Δ}=\left(-k\right)^2-4\left(k-2\right)\)

\(=k^2-4k+8=\left(k-2\right)^2+4>0\)

Do đó: (P) luôn cắt (d) tại hai điểm phân biệt

2: Theo đề, ta có; \(x_1^2+x_2^2+x_1^2+x_2^2=14\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=7\)

\(\Leftrightarrow k^2-2\left(k-2\right)=7\)

\(\Leftrightarrow k^2-2k-3=0\)

=>(k-3)(k+1)=0

=>k=3 hoặc k=-1

30 tháng 12 2018

Phương trình hoành độ giao điểm của ∆  và (P) là

x 2 - x + 3 = x + 2 m ⇔ x 2 - 2 x + 3 = 0                         (*)

Giả sử A ( x A ; y A )  thì B x B ; y B  là các nghiệm của phương trình (*).

Theo định lí Vi-ét ta có x A + x B = 2 .

Ta có y A = x A + 2 m ,   y B = x B + 2 m  nên y A + y B = x A + x B + 4 m = 2 + 4 m .

Tọa độ trung điểm I của đoạn thẳng AB là I x A + x B 2 ; y A + y B 2 = I 1 ; 2 m + 1 .

Chọn A.

28 tháng 6 2020

Xét Parabol \(\left(P\right):y=x^2\)

và đường thẳng \(\left(d\right):y=\left(2m-1\right)x-m+2\)

Phương trình hoành độ giao điểm của \(\left(P\right)\)\(\left(d\right)\) ta có :

\(x^2=\left(2m-1\right)x-m+2\)

\(\Leftrightarrow x^2-\left(2m-1\right)x+m-2=0\)

\(\left(a=1;b=-\left(2m-1\right);c=m-2\right)\)

Ta có :

\(\Delta=b^2-4ac\)

\(=\left(-\left(2m-1\right)\right)^2-4.1.\left(m-2\right)\)

\(=4m^2-4m+1-4m+8\)

\(=4m^2-8m+9\)

\(=4\left(m^2-2m+1\right)+5\)

\(=4\left(m-1\right)^2+5>0\forall m\)

\(\Leftrightarrow\Delta>0\)

\(\Leftrightarrow\) \(\left(P\right)\)\(\left(d\right)\) luôn cắt nhau tại 2 điểm phân biệt \(\left(đpcm\right)\)

24 tháng 10 2020

omae wa mou shindeiru

24 tháng 11 2019

Đáp án A

Ta có 

A thuộc ∆1 nên A( a; a+ 1).

P( 2;1) là trung điểm của đoạn AB nên B( 4-a; 1-a).

Mặt khác:

Đường thẳng AP có VTPT ( 4;-1) và qua P(2;1) nên có phương trình:

4x – y- 7 = 0