Cho P = \(\dfrac{\left(a+1\right)\left(a+2\right)\left(a+3\right)...\left(a+a\right)+3^a}{2^a}\).
Chứng tỏ rằng P không thể là một số tự nhiên với mọi a là số tự nhiên khác 0.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\left(a+1\right)\left(a+2\right)...\left(a+a\right)⋮2\)và \(3^a\)là số lẻ nên Tử số là số lẻ.
Mẫu số là số chẵn. Do đó P không thể là một số tự nhiên với mọi a khác 0.
Ta có : \(A=\left(a-1\right)a\left(a+1\right)\left(a+2\right)+1\)
\(=\left(a-1\right)\left(a+2\right)a\left(a+1\right)+1\)
\(=\left(a^2+a-2\right)\left(a^2+a\right)+1\)
\(=\left[\left(a^2+a\right)-2\right]\left(a^2+a\right)+1\)
\(=\left(a^2+a\right)^2-2\left(a^2+a\right)+1\)
\(A=\left(a^2+a-1\right)^2\)
Vậy A là số chính phương
3. Gọi d là ƯCLN(2n + 3, 4n + 8), d ∈ N*
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}}\)
\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Mà 2n + 3 không chia hết cho 2
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+3,4n+8\right)=1\)
\(\Rightarrow\frac{2n+3}{4n+8}\) là phân số tối giản.
Lời giải:
Ta thấy rằng : \(a=1\Rightarrow P=\frac{2+3}{2}=\frac{5}{2}\not\in\mathbb{N}\)
Với $a>1$ thì $(a+1)(a+2)...(a+a)$ là tích của $a$ số tự nhiên liên tiếp. Do đó trong tích $(a+1)...(a+a)$ có cả thừa số chẵn và thừa số lẻ
Suy ra \((a+1)(a+2)..(a+a)\) chẵn
\(\Rightarrow (a+1)...(a+a)+3^a\) lẻ, tức là không chia hết cho 2
Do đó \(\frac{(a+1)(a+2)...(a+a)+3^a}{2^a}\not\in\mathbb{N}\) (đpcm)