1. Tìm a và b biết rằng:
a. a + b = 18 và a - b = 12
b. a + b = 50 và 2a + 5b =80
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a. \(a=\left(18+12\right):2=15\)
\(b=18-15=3\)
Vậy a = 15; b = 3.
b.\(a+b=50\Rightarrow2a+2b=100\)
\(\Rightarrow2a+5b-2a-2b=80-100=-20\)
\(\Leftrightarrow3b=-20\Rightarrow b=\frac{-20}{3}\)
\(\Rightarrow a=50-\frac{-20}{3}=\frac{170}{3}.\)
Vậy \(a=\frac{170}{3};b=\frac{-20}{3}.\)
a) Vì \(2a=5b\) nên \(\dfrac{a}{5}=\dfrac{b}{2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{5}=\dfrac{b}{2}=\dfrac{3a+4b}{3.5+2.4}=\dfrac{46}{23}=2\)
\( \Rightarrow a=2.5=10;\\b=2.2=4\)
Vậy \(a = 10 ; b = 4\)
b) Vì a : b : c = 2 : 4 : 5
\( \Rightarrow \dfrac{a}{2} = \dfrac{b}{4} = \dfrac{c}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\( \Rightarrow \dfrac{a}{2} = \dfrac{b}{4} = \dfrac{c}{5}= \dfrac{{a + b - c}}{{2 + 4 - 5}}= \dfrac{3}{1}=3\)
\( \Rightarrow a = 3.2=6;\\b = 3.4=12;\\c =3.5=15.\)
Vậy \(a=6;b=12;c=15\).
a) Tìm x
\(6-\left(x-\frac{1}{3}\right)^2=\frac{2^{2013}}{\left(-2\right)^{2012}}\Rightarrow6-\left(x-\frac{1}{3}\right)^2=\frac{2^{2013}}{2^{2012}}=2^1=2\)
\(\Rightarrow\left(x-\frac{1}{3}\right)^2=6-2=4=2^2\Rightarrow\hept{\begin{cases}x-\frac{1}{3}=2\\x-\frac{1}{3}=-2\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{7}{3}\\x=\frac{-5}{3}\end{cases}}}\)
Vậy \(x\in\left\{\frac{7}{3};\frac{-5}{3}\right\}\)
b) Ta có : \(2a=3b\Rightarrow\frac{a}{3}=\frac{b}{2}\) và \(5b=7c\Rightarrow\frac{b}{7}=\frac{c}{5}\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{3}=\frac{b}{2}\Rightarrow\frac{a}{21}=\frac{b}{14}\\\frac{b}{7}=\frac{c}{5}\Rightarrow\frac{b}{14}=\frac{c}{10}\end{cases}}\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có : \(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}=\frac{a+b-c}{21+14-10}=-\frac{50}{25}=-2\)
\(\Rightarrow a=\left(-2\right).21=-42\) \(b=\left(-2\right).14=-28\) \(c=\left(-2\right).5=-10\)
Vậy a = -42 ; b = -28 và c = -10
\(a,\Leftrightarrow\left\{{}\begin{matrix}a=b+1\\2b+2+b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1+1=2\\b=1\end{matrix}\right.\\ b,\Leftrightarrow\left\{{}\begin{matrix}2a-4+a=7\\b=4-a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{11}{3}\\b=4-\dfrac{11}{3}=\dfrac{1}{3}\end{matrix}\right.\)
Ta có : 4x = 5y => \(\frac{x}{5}=\frac{y}{4}\)
Đặt \(\frac{x}{5}=\frac{y}{4}=k\Rightarrow\hept{\begin{cases}x=5k\\y=4k\end{cases}}\)
=> xy = 5k.4k = 20k2
=> 20k2 = 80
=> k2 = 4 => k = \(\pm2\)
Với k = 2 thì x = 5.2 = 10 , y = 4.2 = 8
Với k = -2 thì x = 5.(-2) = -10 , y = 4(-2) = -8
b) Ta có : \(2a=5b=3c\)=> \(\frac{a}{\frac{1}{2}}=\frac{b}{\frac{1}{5}}=\frac{c}{\frac{1}{3}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{\frac{1}{2}}=\frac{b}{\frac{1}{5}}=\frac{c}{\frac{1}{3}}=\frac{a+b-c}{\frac{1}{2}+\frac{1}{5}-\frac{1}{3}}=\frac{-44}{\frac{11}{30}}=-120\)
Từ đó suy ra a = -60,b = -24,c = -40
Áp dụng dãy tỉ số bằng nhau => \(\frac{2a}{5b}=\frac{5b}{6c}=\frac{6c}{7d}=\frac{7d}{2a}=\frac{2a+5b+6c+7d}{5b+6c+7d+2a}=1\)
=> \(B=1+1+1+1=4\)
Các bạn giúp ,mình gâp nhé
Các bạn ghi cả lời giải cho mình nhé
\(2a=5b\Rightarrow\dfrac{a}{5}=\dfrac{b}{2}\)
Áp dụng TCDTSBN ta có:
\(\dfrac{a}{5}=\dfrac{b}{2}=\dfrac{3a+6b}{15+12}=\dfrac{54}{27}=2\)
\(\dfrac{a}{5}=2\Rightarrow a=10\\ \dfrac{b}{2}=2\Rightarrow b=4\)
Giải:
a) Có: \(a+b=18\Leftrightarrow a=18-b\)
Lại có: \(a-b=12\)
\(\Leftrightarrow18-b-b=12\)
\(\Leftrightarrow18-2b=12\)
\(\Leftrightarrow2b=18-12=6\)
\(\Leftrightarrow b=3\)
\(\Leftrightarrow a=18-b=18-3=15\)
Vậy ...
b) Có: \(a+b=50\Leftrightarrow a=50-b\)
Lại có: \(2a+5b=80\)
\(\Leftrightarrow2\left(50-b\right)+5b=80\)
\(\Leftrightarrow100-2b+5b=80\)
\(\Leftrightarrow100+3b=80\)
\(\Leftrightarrow3b=-20\)
\(\Leftrightarrow b=-\dfrac{20}{3}\)
\(\Leftrightarrow a=50-b=50-\left(-\dfrac{20}{3}\right)=\dfrac{170}{3}\)
Vậy ...
a) Ta có
\(a+b=18\)
\(\Rightarrow a=18-b\)
Và \(a-b=12\)
\(\Rightarrow18-b-b=12\)
\(\Rightarrow18-2b=12\)
\(\rightarrow2b=18-12=6\)
\(b=6:2=3\)
b)Ta có
\(a+b=50\)
\(\Rightarrow a=50-b\)
Và \(2a+5b=80\)
\(\Rightarrow2.\left(50-b\right)\)\(+5b=80\)
\(\Rightarrow100-2b+5b=80\)
\(\Rightarrow100\)\(+3b\)\(=80\)
\(\Rightarrow3b=-20\)
Vậy b=\(-20:3\)
\(\Rightarrow a=50-\dfrac{-20}{3}=\dfrac{170}{3}\)